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Patel, D., Šoltészová, V., Nordbotten, J. M., and Bruckner, S. 2013. Instant
convolution shadows for volumetric detail mapping. ACM Trans. Graph.
32, 5, Article 154 (September 2013), 18 pages.
DOI: http://dx.doi.org/10.1145/2492684

This project has been carried out within the Geoillustrator research project,
which is funded by Statoil and the PETROMAKS programme of the Re-
search Council of Norway.
Authors’ addresses: D. Patel (corresponding author), Christian Michelsen
Research, Bergen, Norway and Department of Informatics, University of
Bergen, Norway; email: daniel@cmr.no; V. Šoltészová, Department of In-
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1. INTRODUCTION

A detailed representation of model geometry is crucial for achiev-
ing subtle shading effects commonly found in the real world. Thus,
many techniques have been presented to enrich the appearance of
models by adding spatially varying attributes such as color and
surface normals [Blinn 1978]. While very powerful and popular,
these techniques cannot handle effects such as self-occlusions, self-
shadowing, or changes in silhouettes arising from fine-scale details.
Although these effects can be achieved by changing the actual ge-
ometry, this comes at the cost of rendering a larger number of extra
polygons. Techniques such as relief mapping [Oliveira et al. 2000;
Policarpo and Oliveira 2006] present a solution to this problem by
using image-based detail representations mapped to the surface ge-
ometry. By computing ray intersections per fragment, convincing
illumination effects can be generated. A further extension of this
concept which enables the depiction of arbitrary complex details as
well as correct handling of transparency is to employ volume ren-
dering. Slicing or ray marching can be used to sample a volumetric
texture or procedural function which represents the interior of the
model [Meyer and Neyret 1998] or variations within a shell around
the solid object [Peng et al. 2004; Wang et al. 2004; Porumbescu
et al. 2005]. However, the computational expense of integrating
advanced illumination effects into volume rendering approaches
severely limits their applicability in real-time rendering. While pre-
computation can be used to reduce the runtime impact, this comes
at the expense of not being able to handle interactive modification
of illumination properties or dynamically changing textures [Chen
et al. 2004].

In this article, we derive and study a new approach for dynam-
ically generating approximate but realistic illumination effects for
complex scenes containing objects ranging from translucent vol-
umes to opaque meshes. Our technique features occlusion, soft
shadows, self-shadowing, translucency, and the ability to handle
multiple area light sources.

We approximate shadows in a 3D scene by sweeping over the
scene with parallel and equally spaced blocker planes starting from
the view plane. Each blocker plane represents the opacity of all
intersecting features. Intersection with geometry is calculated using
a Layered Depth Image (LDI) [Shade et al. 1998] while intersec-
tions with volumetric details are calculated procedurally or looked
up from a 3D grid. During propagation, each slice acts both as oc-
cluder and shadow receiver. We propagate shadows along the slices
by repeated convolution of a 2D shadow buffer containing the accu-
mulated shadow, and by adding the occlusion of the blocker planes
to this buffer as the scene is traversed. From a detailed analysis
of our model, we are able to devise an efficient class of convolu-
tion kernels as a function of the light source shape, which enables
rendering at interactive frame rates.

During the slice traversal, all effects are calculated on-the-fly.
Our method uses no complex data structures, requires no data stor-
age except for the LDI, and is efficiently parallelized on the GPU.
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Therefore all parameters can be interactively modified. Due to
our screen space approach, we are able to produce high-frequency
shadows from translucent and dynamically changing procedural
volumetric detail maps at no additional cost.

Using constant convolution kernels on parallel slices makes our
area light sources distant and they are Gaussian shaped due to the
Central Limit Theorem. With our fast convolution-based approach,
the shape of penumbras and the fusion of shadows from different
objects will look plausible but is only approximate. The approxima-
tion requires a user-specified parameter which defines an optimal
shadow casting distance. Only shadows cast on receivers from ob-
jects with this distance in between will be correct, others will be
approximate. We analyze this inaccuracy and compare with refer-
ence renderings. The lighting is view dependent as the area light
sources are positioned behind the view plane. Rendering time in-
creases linearly with the number of light sources since separate
convolution must be maintained for each light source. Our fast ge-
ometry inside-outside test based on the LDI requires that objects are
represented by closed triangle meshes. Our method is well-suited
for visualization and investigation of objects containing volumetric
details together with simpler opaque mesh-based objects providing
global high-quality all-frequency shadow interplay.

The remainder of this article is structured as follows. In Section 2
we discuss related work. Section 3 derives the theoretical basis for
our approach. In Section 4 we describe our rendering algorithm
which exploits iterative convolution shadows for interactive volu-
metric detail mapping. Section 5 presents results achieved with our
novel technique. Our approximation is analytically quantified in
Section 6 and limitations are discussed in Section 7. The article is
concluded in Section 8.

2. RELATED WORK

Shadows are important in the generation of realistic images and
have been extensively studied in computer graphics. Fundamental
shadow methods are reviewed by Woo et al. [1990] and Eisemann
et al. [2009]. An overview of general hard shadow methods can
be found in the work of Scherzer et al. [2011] and an overview of
general soft shadow methods is given in the survey by Hasenfratz
et al. [2003].

A straightforward method for creating soft shadows from area
light sources is to adapt a hard shadow method by computing bi-
nary occlusion maps from several positions on the area light source
and averaging them together. However, for quality shadows, many
positions must be used, which increases the processing time sub-
stantially [Heckbert and Herf 1997; Agrawala et al. 2000]. Ritschel
et al. [2009] present a method for screen-space directional occlusion
which uses depth peeling for storing several depth values per pixel.
The depth values are sampled on a hemisphere around each pixel
while recording which unblocked directions are pointing towards
a light source. In contrast to our approach, the method does not
directly support nonopaque blockers and propagation of shadows
through volumes. Deep shadow maps [Lokovic and Veach 2000] al-
low for volumetric shadows as each pixel in the shadow map stores
an array of the fractional visibility of the light source for all depths.
This visibility function must be precomputed and compressed to re-
duce memory requirements. Fourier opacity mapping [Jansen and
Bavoil 2010] represents visibility only for low-frequency volumes
by precomputing Fourier coefficients. Using few coefficients allows
for fast integration of the light absorption but can only approximate
low-frequency signals and exhibits ringing around abrupt changes.
In contrast, we calculate the visibility while traversing the scene
which eliminates the need for precomputation. Baran et al. [2010]

present a real-time method with volumetric shadows for recreating
the effect of light beams from a point light. The spatial positioning
of light beams through a volume is defined by objects blocking the
light source. To quickly identify these positions in parallel on the
GPU, an epipolar rectification of a shadow map is performed so that
light rays are orthogonally aligned with the viewing rays. In later
work [Chen et al. 2011], speed is further improved using a min-max
structure of the depth image from the camera for finding the lit seg-
ments of each viewing ray. Whereas they only model homogeneous
translucent material, we allow for freely varying material opacities.

Convolution methods. Our method creates soft shadows using
convolution in an iterative manner. Early use of convolution for
soft shadows was presented by Max [1991] where a texture repre-
senting skylight is convolved to create ground shadows. Soler and
Sillion [1998] create soft shadows by projecting the opacities of oc-
cluders in a scene to a plane in the center of the occluder geometry.
The plane is then convolved with the shape of the light source scaled
with the distance to the shadow receiver. This results in an increas-
ing penumbra with increasing distance. Extensions of this approach
by Donnelly and Lauritzen [2006] and Annen et al. [2007] addi-
tionally employ depth maps. However, these methods only create
penumbras of constant width. This limitation was addressed by
Annen et al. [2008]. Their technique approximates in real time real-
istic shadows from multiple area light sources. These works [Annen
et al. 2007, 2008] require the calculation of Fourier bases to rep-
resent a binary visibility function which can only represent opaque
shadow casters. The approach by Eisenmann and Decoret [2008]
approximates soft shadows from opaque geometry by slicing the
scene to create planar occluder slices. These slices are convolved
with a box filter with a size corresponding to their distance to the
light source. The approach creates convincing shadows using a
low number of slices which allows for prefiltering. Accommodat-
ing their method for sampling high-frequency translucent objects
would result in high memory consumption for storing all the pre-
filtered slices. Even assuming that filtering of slices would take no
time with their approach, the time complexity of their algorithm
will be of a higher order than ours. For each point, they must add
up the shadow from all slices between the point and the light, that
is, when a point is between slice k and slice k + 1, they must add
up the shadow from all the k slices behind it. For a scene with
n slices, this results in O(n2) operations. In contrast, for slice k,
we only add up the shadow from slice k − 1 into our accumulated
light buffer. Our method therefore has complexity O(n). Hence,
our approach is an efficient approximation specifically designed to
enable the depiction of high-frequency volumetric details, while
the method by Eisemann and Decoret provides correct shadows for
opaque geometry.

Volume rendering methods. The model presented by Kniss
et al. [2003] captures volumetric light attenuation effects including
volumetric shadows. This is done by modeling directional scat-
tering, which is calculated using iterative slice-based convolution.
They also support procedural volumetric details. Zhang and Crawfis
[2003] create shadows by iteratively convolving volumetric slices
with a top-hat filter and rendering the results, including geometry
using CPU-based splatting. Schott et al. [2009] used iterative convo-
lution to achieve effects similar to ambient occlusion. The technique
presented by Solteszova et al. [2010] extended this work with the
ability to control the direction of scattering. The main differences
from all these works [Kniss et al. 2003; Zhang and Crawfis 2003;
Schott et al. 2009; Šoltészová et al. 2010] are that we derive an
efficient class of convolution kernels that perform the convolution
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faster and that we can model multiple, Gaussian-shaped and colored
light sources acting on polygonal models with volumetric pertuba-
tions. This achievement arises from a theoretical analysis of iterative
convolution in relation to physically correct shadows.

Global illumination methods. Photon mapping meth-
ods [Jensen and Christensen 1998] can create high-quality render-
ings with effects including soft shadows. Real-time photon mapping
for simulating refractions was investigated by Sun et al. [2008] and
Ihrke et al. [2007]. Sun et al. [2008] send photons from point light
sources along refractive paths into a volumetric object followed
by a ray casting pass. They perform voxelization into an octree
structure which limits their approach to low-frequency effects and
sparse scenes. Furthermore, their approach focuses on refraction
effects. Refraction is also the focus of Ihrke et al. [2007]. In their
approach, irradiance is precomputed using a novel wavefront-based
propagation scheme. Wavefronts originating at point light sources
are propagated, refracted, and attenuated according to the mate-
rial properties. The light is gathered by ray casting. Their method
requires storage of a complete volume containing refractive values.

Kaplanyan and Dachsbacher [2010] presented a method for re-
alistic real-time indirect illumination. They voxelize the scene into
a volume and capture blocker geometry by depth peeling similar
to our approach. Radiance from direct light is inserted into the
volume by rendering the scene from each point light source, and
then injecting a Virtual Point Light (VPL) into the volume for each
visible fragment. Area light sources and environment maps are di-
rectly injected as VPLs. To achieve interactive frame rates, volume
resolution is reduced further away from the camera using a nested
volume hierarchy. Light is propagated by stepwise exchange be-
tween immediate volumetric neighbors only along the three main
axes and VPLs store light direction distributions with spherical
harmonics. This results in a low-frequency light approximation.
High-frequency surface details are achieved using bump mapping
and screen-space ambient occlusion. In contrast, we achieve all-
frequency surface and subsurface volumetric details with low space
consumption, no precomputation, and no complex data structures,
although we focus on shadows.

Crassin et al. [2011] support indirect illumination with specular
highlights. Scene geometry is rasterized three times along the three
main axes from which a sparse octree is created with large nodes
in areas of empty space. Each octree node describes one normal
distribution function for the direction of incoming light and one for
the surface normal as well as a scalar occlusion value. The parts
of the scene receiving direct light are injected into the octree leaf
nodes. Parent octree nodes are updated to contain the averaged val-
ues of their children. Irradiance is gathered for the final rendering
by summing up the contributions from cones covering a hemisphere
around each surface fragment. For each cone, a ray is sent out col-
lecting irradiance from the octree. As opposed to our method, they
do not directly support translucent volumes. To be able to support
this, their gathering of irradiance would require sampling over a
volume instead of over a surface and would therfore yield a higher
algorithmic complexity. Also, their method requires preprocessing
for recreating the octree when the scene changes. Their method
uses a more advanced and realistic light model than ours for surface
rendering whereas our approach can work with higher resolution in
the context of volumetric procedural content.

In contrast to these global illumination methods which produce
a rich set of effects, we focus on convincing all-frequency soft
shadows from area light sources. We do not require an intermedi-
ate discretization of the illumination information and are therefore
able to handle high-frequency volumetric details. Our method is

Fig. 1. Soler and Sillions’ [1998] shadow model consisting of a light source
with exitance function S(x), a blocking geometry with extinction function
P (x), and a resulting shadow function V (x) for the receiving surface.

fast in execution, and conceptually simple to implement. The main
contributions of our work can be summarized as follows.

—We present a model for iterative convolution shadows and pro-
vide a theoretical and experimental analysis of how it relates to
physically correct shadows.

—Based on our analysis, we derive an efficient class of convolu-
tion kernels which enable high quality at only a fraction of the
computational costs of other approaches.

—We present a GPU-based algorithm for interactive rendering of
scenes with dynamically changing volumetric detail maps which
supports self-shadowing and translucency.

3. ITERATIVE CONVOLUTION SHADOWS

In our method, we want to render a polygonal model as a volu-
metric object with an arbitrary detail function applied to specify
the appearance of its interior. In order to generate convincing vi-
sual results, we need to be able to efficiently compute the effects
of self-shadowing due to the volumetric perturbations which have
been applied. In this section, we derive an approximation of correct
shadows using iterative convolution and investigate the properties
of this approach.

3.1 Shadows By Convolution

Soler and Sillion [1998] used convolution to express the shadow
cast on a surface from a light source with a blocking geometry in
between, as shown in Figure 1.

They express the irradiance at a point y on the receiver as

H (y) = E

∫
S

cos(θ )cos(θ ′)
πd(x, y)2

dx︸ ︷︷ ︸
F (y)

∫
S

S(x)P (x ′)dx︸ ︷︷ ︸
V (y)

, x ′ = d1x + d2y

d1 + d2
.

(1)

The first integral F (y) is the unoccluded point-to-polygon form
factor from y to the light source which represents local surface
shading. The second integral V (y) is the visible area of the light
source as seen from y and describes the degree of shadowing. Both
integrate over the area of the light source S. E is the exitance [Sillion
and Puech 1994] of the light source, d(x, y) is the distance between
a point x on the light source and a point y on the receiver. S(x)
is the degree of light on the light plane and P (x ′) is the degree of
blockage on the blocker plane. The product S(x)P (x ′) is therefore
the amount of light received at y from x.
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The form factor F can be computed analytically based on the
light function and local surface information. Calculating V is more
involved due to the nonlocal problem of considering all potentially
blocking geometry between the receiver and the light source. Soler
and Sillion [1998] show how V (y) can be expressed as a convolu-
tion. They model near-field lighting since their light plane can be
arbitrarily close to the receiver plane. We constrain the model for
diffuse and distant lighting where the light is situated behind the
viewer. This has certain mathematical advantages as will be shown
later. With distant lighting from behind the viewer, the light can be
described by an environment map of a hemisphere.

We will now change Eq. (1) from modeling near-field lighting
to model distant lighting. The distant lighting can be considered as
coming from a plane infinitely far away. Therefore the light source
will look identical when observed from all positions in the scene.
Expressing this in the model of Soler and Sillion [1998], we need to
represent the distant light on the local light plane shown in Figure 1.
Since the local light plane now represents a nonlocal light, we will
refer to it as the virtual light plane. The distant light source will be
represented on the virtual light plane by projecting it onto the virtual
light plane relative to an observation point y on the receiver plane.
This projection will, for an observer moving along the receiver
plane, translate with movement. This is analogous to observing a
distant light source, such as the moon, through a window (the virtual
light plane). When moving the viewpoint sideways, the position of
the moon inside the window frame will translate with the same offset
as the viewer. To express this translation, we modify the S(x) term
to become S(x − y). For distant lighting, the distance between the
virtual light plane and the receiver is an artificial construct, therefore
we fix it by setting d1 + d2 = 1, resulting in a new expression for
x ′ as shown in Eq. (2).

In this model, the form factor is reduced to Lambertian shading.
Since the light is diffuse, the term cos(θ) falls away. The distance d
is constant due to distant lighting. What remains is the integration
of cos(θ ′) in an interval around the angle θ ′. This integral evaluates
to c cos(θ ′) for a constant c in the size of the interval and represents
Lambertian shading. Collecting constants into K , we get

H (y) = K cos(θ ′)︸ ︷︷ ︸
F (y)

∫
S

S(x − y)P (x ′)dx︸ ︷︷ ︸
V (y)

, x ′ = d1x − d1y + y.

(2)

V (y) can be expressed as a convolution (see Appendix A.1 for the
derivation).

V (y) = 1

d1
S

(
− 1

d1
y

)
∗ P (y) (3)

After having derived Eq. (3) from Soler and Sillions work [1998]
using their notation, we rename the light function S(x) to l(x), the
occluder function P (x) to o(x), and the shadow V (x) at distance d1

to sd1 (x). We change the order of the convolution arguments and we
let the integral of l(x) be 1. This results in the expression

sd1 (x) = o(x) ∗ 1

d1
l

(
− 1

d1
x

)
(4)

which describes the shadow s on a plane at distance d1 from the
occluder plane as a convolution of the occlusion object o(x) and a
kernel derived from the light function l(x).

This relates to one blocker and one receiver only. In the next
section, we present an approximation for multiple blockers and
receivers, for the purpose of rendering a 3D scene, which will be
employed throughout the article.

3.2 Iterative Convolution

A 3D scene can be approximated by several parallel and equally
spaced blocker planes where each blocker plane represents the opac-
ity of all intersecting geometry. To render such a scene with shad-
ows, we let all slices act both as occluders and shadow receivers.
Any object in the scene will cast shadows on any other object be-
hind it. We obtain the shadow cast from slice n to slice n + 1 by
convolving the opacity of slice n with a kernel κ(x) which we will
design later. The shadow is inserted into the scene by blending it
with the opacity of slice n+1. This then becomes the altered opacity
of slice n + 1. We perform the same operation from slice n + 1 to
slice n + 2 until the end of the scene is reached.

The correct shadow sd1 on a receiver plane at distance d1 from
an occluder plane for a distant light source model was expressed in
Eq. (4). Our iterative approach propagates the shadow from slice to
slice by convolving with a kernel κ . We define κ so that after iterating
it a specific number of times, we have calculated the shadow at the
distance d1 from an occluder. For the purpose of finding κ , we let rn

represent the iterated shadow behind an occluder plane o(x) after n
iterations. Then r0(x) = o(x) and rn+1 = rn ∗ κ . Since convolution
is associative, the iterated shadow after n iterations is

rn(x) = o(x) ∗ κ∗n(x), (5)

where κ∗n denotes kernel κ convolved n times with itself.
Let μκ denote the mean, and σ 2

κ the variance of κ . The Central
Limit Theorem states that repeated convolution will tend towards
a Gaussian function. Throughout the article we write ga,b for the
Gaussian function with mean a and variance b. Since n convolutions
of κ , denoted as κ∗n, have a mean of nμκ and variance of nσ 2

κ , we
can approximate κ∗n with (see Appendix A.2, Eq. (13) for the
derivation)

κ∗n ≈ gnμκ ,nσ 2
κ
. (6)

Based on this fact, any kernel κ with mean μκ and variance σ 2
κ ,

as specified in Eq. (7), will approximate the Gaussian light l(x) =
gμl ,σ

2
l
(x) for any occluder at a plane of distance d1 from the receiving

plane with an iterative slicing distance e (see Appendix A.2, Eq. (14)
for the derivation)

μκ = −eμl σ 2
κ = d1eσ

2
l . (7)

Thus, to simulate a light l(x) with our iterative method, we it-
eratively convolve with a kernel based on the mean and variance
of the light. The more different from a Gaussian intensity distribu-
tion the light is, the more incorrect the shadow approximation will
be. The shadows will still be plausible, but will instead represent the
shadows from the closest matching Gaussian light. Also, an optimal
distance d1 for shadows must be selected, that is, for all pairs of
shadow casting and shadow receiving planes at this distance from
each other, the shadow on the receiver will be correct. When insert-
ing these parameters, in addition to the slice distance e, into Eq. (7),
the output will be a mean and variance that the iterative convolution
kernel must have. A scene is then rendered using a convolution
kernel with this mean and variance. However, an unlimited number
of kernels with the same mean and variance exist. A discussion on
their difference is presented in Section 3.3.

Since we are modeling a distant light source, we can define the
light function over a hemisphere (Figure 2). Thus, an alternative
way of specifying μl is to define the angle of incoming light from
the hemisphere, ω, which is then translated to the mean μl = tan(ω)
on the virtual light plane. Since μl tends to infinity as the angle ω
goes towards ±90 degrees, lower angles must be used. The extent
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Fig. 2. Relative positions and sizes of a light hemisphere, a light plane,
the viewer, and a scene. Arrows show the mapping between the virtual light
plane we use in our approach and a light hemisphere.

of the light source is specified by the variance of the light on the
virtual light plane.

A light function with more than one intensity peak cannot be
modelled well by a Gaussian function. We therefore approximate
an n-peaked or n-light-source setup by working with n separate one-
peaked Gaussian light sources, each represented by separate kernels
and each maintaining a separate shadow buffer when iterating the
scene. The combined shadow for each intermediate slice will then
be the sum of the n separately calculated shadows. Thus, we can
approximate a hemispherical environment map by projecting it onto
the virtual light plane to define l(x), and perform Gaussian fitting
on l(x) so that the sum of a user-defined number of Gaussians
approximate l(x). Then these light sources can be used to simulate
the environment map. Finding an optimal Gaussian fitting might not
be trivial, however, a greedy method similar to the one suggested
by Annen et al. [2008] could be applied.

3.3 1D Convolution Kernels

Due to the Central Limit Theorem, we achieve similar shadows
when convolving with any kernel with the same mean and variance
as κ . A specific mean and variance therefore defines an equivalence
class of kernels. For a sequence of convolutions, any kernel from
this class can be used, asymptotically yielding the same result.
The Central Limit Theorem holds as long as the Lyapunov condi-
tion [Ash and Doleans-Dade 1999] for the kernels is satisfied. This
condition allows, for a sequence of convolutions, to use different
kernels from an equivalence class while still achieving identical
shadow. Kernels in this equivalence class do, however, differ in
their calculation time and their speed of convergence towards the
Gaussian. In Table I we compare three kernels in this equivalence
class, all with mean 0 and variance σ 2. They are the top-hat
kernel, the Dirac kernel using two samples at equal distances
from the center, and the stochastic Dirac kernel. The Dirac kernel
has a sample in position −σ and in σ to attain a variance of σ 2.
The stochastic Dirac kernel randomly perturbs the two sampling
positions from the Dirac kernel while in average having mean 0
and variance σ 2. The results of these three kernels convolved with
a Heaviside function are depicted in Figure 3. The Dirac kernel,
only requiring two samples irrespective of its variance, is attractive
in terms of performance. However, one can expect the kernel to
behave badly with its coarse sampling pattern which can be seen in
the coarse approximation in the middle image. Using the stochastic
Dirac kernel reduces the negative effects of the static Dirac kernel
and its results can be seen in the rightmost column of Figure 3.

3.4 2D Convolution Kernels

To operate on 2D slices in 3D scenes, the 1D kernels described
earlier must be extended to 2D. Since the Central Limit Theorem

Table I. Equivalent Kernels

Kernel Mean Variance Width Samples

Top-hat 0 σ 2
√

12σ
√

12σ

Dirac 0 σ 2 2σ 2

Stochastic Dirac 0 σ 2 2σ ± 2 2

Fig. 3. Iterative shadow evolution for 100 steps using different convolution
kernels. Every second image is a zoom-in of the black rectangle. Left to right:
Top-hat kernel of width 19 using 19 samples, Dirac kernel of width 11 using
2 samples, and stochastic Dirac kernel of width 11 ± 2 using 2 samples.

Fig. 4. Equidistant points on an ellipse with major axis a and minor axis b

projected to the x-axis and y-axis. The point distribution on the x-axis has
variance σ 2

x and the y-axis has variance σ 2
y .

extends to higher dimensions, the 2D iterated kernel κ∗n will con-
verge towards a 2D Gaussian. The 2D Gaussian can be described by
a 2D covariance matrix or alternatively by its eigenvalues σ 2

x and σ 2
y

and its rotation angle α representing the angle of the smallest eigen-
vector. A 2D light source can thus be approximated using a kernel
with a corresponding mean defined by μ = (μx, μy) and variance
defined by the rotation α and σ 2 = (σ 2

x , σ 2
y ). This means that when

extending our model to 3D, we can simulate light with a rotated
ellipsoid shape. For practical reasons we specify the light angle by
an x-tilt angle and a y-tilt angle which then defines (μx, μy).

A natural choice for the convolution kernel would be a 2D
Gaussian function. The problem with this approach is that the
number of samples quickly becomes prohibitively expensive for
interactive applications. A common alternative is to instead place
sparse samples on a 2D Poisson disk. Additionally, in order to
avoid artifacts caused by a regular sampling pattern, the disk can
be rotated by a random offset [Isidoro 2006].

However, based on our observations with the 1D Dirac kernel,
we propose a 2D extension of this kernel which leads to excellent
visual results with considerably less computational costs. We use an
elliptical kernel shape where equidistant samples are only located
on the circumference of an ellipse as illustrated in Figure 4. Similar
to the stochastic 1D Dirac kernel and analogously to the rotating
Poisson disk, we add a random rotational offset to avoid artifacts
caused by subsequent iterations using exactly the same locations.

Identifying the major and minor radius (denoted by a and b,
respectively, in Figure 4) so that the kernel has the specific variance
(σ 2

x , σ 2
y ) is slightly more involved than what could be expected

due to the lack of a closed-form expression. Therefore, we use two
precalculated lookup tables. The tables are calculated for a unit
ellipse parameterized by t ∈ [0, 1] with major and minor radius
aunit = 1 − t and bunit = t . The first table ratioT oab() maps from
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the ratio rat = σ 2
y /σ 2

x to a t defining an unit ellipse having an
identical variance ratio. The second table abT oV arx() maps from
t to the x-variance σ 2

xunit of the unit ellipse.

rat = σ 2
y /σ 2

x t = ratioT oab(rat), σ 2
xunit = abT oV arx(t)

aunit = 1 − t, bunit = t

Now, using the scale difference between the target variance σ 2
x and

the unit ellipse variance σ 2
xunit , we must scale aunit and bunit to get

the major and minor axis of the target ellipse. Since cV ar(X) =
V ar(

√
cX) for a stochastic variable X, we scale with

√
sc.

sc = σ 2
x /σ 2

xunit a = aunit ∗ √
sc, b = bunit ∗ √

sc

The derivation of the tables ratioT oab() and abT oV arx() is found
in Appendix A.7.

4. INTERACTIVE VOLUMETRIC DETAIL MAPPING

Our aim is to achieve convincing illumination of models enhanced
with complex volumetric details which are either represented by 3D
textures or procedurally generated. Furthermore, we want to enable
dynamic changes of these details. Such a scenario is not handled
well by previous approaches: methods based on precomputed radi-
ance transfer, for instance, need to store illumination information.
For high-frequency procedural detail, this is prohibitively expensive
in terms of memory consumption and, consequently, performance.
Iterative convolution shadows, however, can generate convincing
soft shadowing effects without requiring any precomputation. Our
approach treats a polygonal model as the boundary of a volumetric
object. The interior of the object is defined by a volumetric detail
function which defines its material properties, which include the
opacity, at each location within the object. We assume a scalar-
valued continuous volumetric function f : R

3 → R. This volumet-
ric detail function can be a 3D texture, procedurally defined, or a
combination of both.

Our algorithm consists of two basic steps which are performed
for every frame. First, we generate a Layered Depth Image (LDI)
of the polygonal model. The LDI stores, for each depth layer, the
depth of the corresponding surface point as seen from the current
camera position as well as additional attributes used during render-
ing. This allows us to distinguish between interior and exterior of
the object during the subsequent rendering pass. In the second step,
we traverse the bounding box of the model in view-aligned slabs.
For each point on a slab, the LDI gives us information on whether
the corresponding viewing ray enters or leaves the object within its
bounds. For inside regions, we use the detail function to determine
the color and opacity accumulated within the slab. This informa-
tion is used to perform alpha blending into an intermediate image.
Illumination is performed using the iterative convolution approach
detailed in the previous section.

4.1 Layered Depth Image Generation

An LDI is a well-known data structure for representing models as
a 2D array of layered depth pixels [Shade et al. 1998]. A layered
depth pixel is a set of depth fragments along one line of sight typi-
cally stored in front-to-back order. Initially proposed in the context
of image-based rendering, LDIs have found a wide variety of ap-
plications in computer graphics. In our approach, we employ an
LDI as a means of quickly identifying interior and exterior regions
of the model using a volumetric parity test as proposed by Trapp
and Döllner [2008]. In addition to depth information, our LDI rep-
resentation also stores the surface normal and an optional material

identifier for each depth layer. Typically, LDIs are generated using
the depth peeling technique. However, recent advances in graphics
hardware also enable a single-pass approach which is particularly
beneficial for models with a large number of primitives. As random
access to GPU memory and atomic operations can now be per-
formed in the shader, it is possible to directly generate a per-pixel
linked list of depth fragments [Gruen and Thibieroz 2010]. For each
pixel, a counter for the number of depth layers and an index into a
shared pool of list entries is stored in global device memory. Each
of these entries, in turn, stores the fragment data together with the
index of the next list entry. The model is then rendered once and
for each fragment, a global counter is incremented using atomic
operations to allocate a new list entry. After the linked list for each
pixel has been generated in this way, an additional sorting pass is
performed to sort the entries for each pixel in front-to-back order.
In our case, every list entry in our LDI representation stores the
depth, eye-space normal direction, and material identifier of the
corresponding fragment packed into a single rgbα tuple.

This approach is very fast. For a model with 871414 triangles at a
viewport size of 1024×768, LDI generation and sorting can be per-
formed at 130 frames/second on an NVidia GeForce GTX 480. The
entire LDI requires approximately 21MB of GPU memory. In cases
of high depth complexity and image resolution, memory consump-
tion could potentially become a bottleneck. In such cases, a hybrid
approach which incrementally constructs the LDI only for a certain
depth range could be employed to limit memory requirements.

4.2 Convolution Shadow Rendering

After the LDI has been generated, we now can employ the volumet-
ric information it represents during rendering. The bounding box of
the model is divided into slabs which are processed in front-to-back
order. Each slab reads and updates the following buffers.

Light buffers. Two light buffers are required for each slab.
I0(x, y) represents the lighting intensity leaving the previous slab.
For each slab pixel, the convolution kernel is applied and the out-
going lighting intensity is written to I1(x, y). The two buffers are
switched after every slab.

Layer buffer. This buffer stores the current parity bit P (x, y),
the layer index L(x, y), normal N (x, y), and material identifier
M(x, y) of the current depth layer, as well as the depth Z(x, y) of
the next depth layer.

Color buffer. The color buffer stores the intermediate color
C(x, y) and opacity A(x, y) for each image pixel. Front-to-back
alpha blending is used to, for each pixel, combine the contributions
of the current slab with the previous values stored in the color buffer.

The layer buffer is initialized with the corresponding values of the
first depth layer in the LDI, the color buffer is filled with transparent
black, and each light buffer is set according to the color of the
corresponding light source. Convolution is performed in a ping-
pong manner. Hence, for N light sources, a total of 2N light buffers
are required. Every slab which intersects the model’s bounding box
is rendered as a view-aligned quad and for each pixel (x, y) of a
slab, the following steps are performed (see Figure 5).

(1) Convolution. We first apply the convolution kernel to the outgo-
ing lighting intensity I0(x, y) of the previous slab. This opera-
tion has to be performed for every slab, irrespective of whether
it has a visible contribution to the image. Hence, it is impor-
tant that this is a fast operation. Our implementation supports
Gaussian, Poisson disk, and elliptical kernels.
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Fig. 5. Conceptual overview of our rendering algorithm.

(2) Intersection. We then retrieve the current layer buffer, that is, the
parity bit p = P (x, y), layer index l = L(x, y), normal n =
N (x, y), and material identifier m = M(x, y) of the current
depth layer, as well as the depth z = Z(x, y) of the next depth
layer. This information is used to test whether the next depth
layer intersects the current slab by comparing z to the depth at
the front face and the back face of the slab. If an intersection
occurs, the current parity bit p is inverted and the layer index
l is incremented. Furthermore, the new values of n, m, and z
are read from the layered depth image using the updated layer
index l. This is repeated until the next layer’s depth value z is
larger than the slab’s back face to avoid artifacts when multiple
intersections occur within the slab.

(3) Shading. If the current parity bit is one, that is, the slab is lo-
cated inside of the model, or an intersection has occurred, the
volumetric detail function is evaluated. We assume that the vol-
ume remains constant within each slab. Hence, we evaluate the
function only at a single point within the slab. If an intersection
has occurred, we evaluate the function at the intersection point.
Otherwise, we use a per-pixel jittered offset along the viewing
ray’s path through the slab. The value of the volumetric detail
function together with the current material index is then used
to determine the material properties of the current sample. We
use a set of 2D textures which store the material properties for
each function value and material identifier. Next, shading is per-
formed using the incoming illumination intensity for each light
source computed in step (1). In our approach, we apply purely
diffuse illumination except when a surface intersection has oc-
curred. In this case, we additionally add a specular component
given by a microfacet BRDF [Ashikmin et al. 2000].

(4) Update. The final color of the sample is then blended into
the color buffer C(x, y). The outgoing illumination intensity is

determined by the transport color of the material [Kniss et al.
2003] and written into I1(x, y). If an intersection has been
detected in step (2), the updated values of p, l, n, and z are
written to the layer buffer.

After all slabs have been processed, the color buffer contains the
final image for display. As this approach does not employ any pre-
computation and is completely independent of model geometry and
volumetric detail function, all parameters can be modified inter-
actively. In our implementation, we use a simple gradient widget
for the specification of material colors and opacities to achieve a
wide variety of effects. Furthermore, we provide multiple procedu-
ral volumetric detail functions (fractional Brownian motion, ridged
multifractal, improved Perlin noise [Perlin 2002], etc.), which can
also be time dependent, and allow the user to alter settings like oc-
taves, lacunarity, and gain. The presented method was implemented
in C++ and OpenGL, but all relevant parts of the algorithm are
executed on the GPU as GLSL shaders.

5. RESULTS

In this section, we first demonstrate that our approach is able to
generate high-quality visual results for arbitrary volumetric detail
functions applied to common models at interactive frame rates.
High-frequency dynamic details as well as large-scale modifica-
tions are equally possible. All frame rates were measured on a sys-
tem equipped with an Intel Core i7 3.20 GHz CPU and an NVidia
GeForce GTX 480 GPU using a viewport size of 768×768. They in-
clude layered depth image generation, evaluation of the volumetric
detail function, and rendering. A shader-based implementation of a
procedural 4D noise function was used as the basis for volumetric
detail mapping.

In Figure 6, our method is used to apply translucency and
coloring effects to alter the appearance of the original model
(rendered using standard Phong shading in Figure 6(a)). Without
shadows, as shown in Figure 6(b), the result is not very dramatic,
while the self-shadowing effects of the volumetric detail function
in Figure 6(c) lead to a much more realistic depiction. The frame
rate was 16.47 frames/second. Figure 7 shows several different
variations of how our approach can be used for drastically altering
a model’s appearance. In Figure 7(a), the original model is shown.
Figure 7(b) shows how a simple procedural detail function can be
applied to achieve an aged look. In Figure 7(c), the lookup table has
been modified to give the appearance of opaque pieces of material
embedded in a translucent medium and a different detail map has
been applied to the floor and wall. Figure 7(d) uses the same set-
tings, but an additional colored light source has been added. Finally,
Figure 7(e) shows the effects of significant topological changes,
translucency, and chromatic attenuation. The frame rate was
10.47 frames/second for one light source and 7.85 frames/second
for two light sources. The example in Figure 8 shows the effect of
different light sources. The original model is shown in Figure 8(a),
while Figure 8(b) and (c) show volumetric detail mapping rendered
using two different colored light sources. The combined effect of
both light sources is shown in Figure 8(d). The frame rate was
18.06 frames/second for one light source and 13.24 frames/second
for two light sources. Figure 9 demonstrates large-scale procedural
modifications combined with the application of a 3D brick
texture. Two light sources were used and the frame rate was
7.48 frames/second. Figure 10 shows how varying volumetric tex-
turing effects can be assigned to different materials using a detailed
model of the human heart. The frame rate was 10.39 frames/second.

All these results were generated with a 2-sample ellipse kernel
which has shown to provide virtually indistinguishable and
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Fig. 6. Effect of shadows. Model rendered using (a) Phong shading; (b) volumetric detail mapping without shadows; (c) volumetric detail mapping with shadows
at 16.47 frames/second. The Raptor model was provided courtesy of 3D Systems geomagic Solutions by the AIM@SHAPE Shape Repository (http://shapes.aim-
at-shape.net/).

Fig. 7. Detail mapping parameters. Model rendered using (a) Phong shading; (b)–(e) varying volumetric detail mapping settings. The frames rate was 10.47
frames/second for all images except (d) where the addition of a second light source resulted in a reduction to 7.85 frames/second. The Chinese Lion model was
provided courtesy of Inria by the AIM@SHAPE Shape Repository (http://shapes.aim-at-shape.net/).

sometimes better results compared to kernels with significantly
higher computational costs. A comparison of different kernels
is shown in Figure 11. The figure shows, from left to right, a
2-sample ellipse kernel, a 3-sample ellipse kernel, Poisson disk
sampling with 8 and 16 samples, and a 19 × 19 Gaussian kernel
for low (top row) and high (bottom row) light source variance.
For comparison, the rightmost column shows reference renderings
generated using PBRT [Pharr and Humphreys 2010]. It can be
seen that even the 2-sample ellipse kernel produces results with
no significant differences to the Gaussian kernel, at only a small
fraction of the cost. The 8-sample Poisson disk, on the other hand,
shows a considerable amount of noise for the high-variance case.
The frame rates were 22.58 frames/second (2-sample ellipse),
20.34 frames/second (3-sample ellipse), 11.83 frames/second
(8-sample Poisson disk), 6.71 frames/second (16-sample Poisson
disk), and 0.48 frames/second (19 × 19 Gaussian).

To further show that our approach is able to closely approximate
realistic volumetric illumination effects, we performed a compar-
ison with Exposure Render [Kroes et al. 2012], an open-source
CUDA-based implementation of Monte Carlo volume ray tracing.
As Exposure Render only supports volume data, we used a medical
computed tomography scan with a resolution of 512 × 512 ×
460 voxels as input data. The results are shown in Figure 12.
While there are subtle differences in the images mainly due to
differences in transfer function handling, our approach is able to

accurately mimic the overall appearance of opaque and translucent
structures and even captures small-scale details. Our algorithm
performed at 9.43 frames/second while Exposure Render required
several seconds for convergence (to ensure full convergence the
presented images were generated using 1000 iterations which took
approximately 40 seconds).

To demonstrate the advantages of our approach compared to
other methods which employ voxelization, we compare a grid rep-
resentation of a volumetric detail function to procedurally generated
effects in Figure 13. Even though a fairly high grid resolution of
412 × 412 × 247 was used, the magnification clearly shows that
fine details cannot be accurately captured. We conclude that while
voxel-based representations can be advantageous in sparse scenes,
our method can handle dense volumetric details as it operates in
image space and does not require an intermediate discretization.

In order to verify our theoretical light model, we performed
several additional comparisons using PBRT as a reference. In
Figure 14, the scene consists of a thin disk above a parallel plane.
Three light sources are used: a green light with low uniform
variance (σ 2

x = σ 2
y = 0.8), a red light with higher uniform variance

(σ 2
x = σ 2

y = 3.2), and a blue light with zero σ 2
x and high σ 2

y rotated
70 degrees clockwise. This scene setup was rendered with our
method in Figure 14(a). In Figure 14(b), PBRT was used by project-
ing the light settings from our light plane into an environment map
as shown in Figure 2. We use the variance calculated from Eq. (7)
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Fig. 8. Multiple light sources. Model rendered with (a) Phong shading;
(b) and (c) our algorithm using one light source at 18.06 frames/second;
and (d) our algorithm using two light sources at 13.24 frames/second. The
Ramesses model was provided courtesy of Inria by the AIM@SHAPE Shape
Repository (http://shapes.aim-at-shape.net/).

to get the correct shadow for the disk-plane distance. The similarity
of the renderings demonstrates that we can accurately simulate
shadows from light sources of different angles and shapes when the
occluder and receiver are on parallel planes at a known distance.

Figure 15 depicts increasing uniform light source variance from
left to right (using the scene setup shown in Figure 18(a) but with
narrow rectangular occluders) with light coming from the left. These
results illustrate that even though our model is an approximation, it
results in visually plausible soft shadows.

We have shown that our method is able to render interactive
scenes with dynamically changing and translucent content under
multiple light sources of arbitrary Gaussian shape and rotation.
While our model is an approximation of correct shadows, we have
analyzed the behavior of this approach and shown that it allows us
to generate visually convincing results. In particular, as our ellip-
tical kernel is able to simulate large light source variances with a
low number of samples, our approach is well-suited for represent-
ing natural directional illumination from distant lights. In the two

Fig. 9. Combination of different volumetric detail functions. Model ren-
dered with (a) Phong shading; (b) our algorithm using a 3D brick tex-
ture to specify color and a procedural function to specify opacity at
7.48 frames/second. The Bimba Con Nastrino model was provided courtesy
of IMATI-GE/CNR by the AIM@SHAPE Shape Repository (http://shapes.
aim-at-shape.net/).

subsequent sections, we will analyze and discuss the limitations of
our method.

6. COMPARISON OF CORRECT AND ITERATIVE
CONVOLUTION SHADOWS

We will now analyze the difference between a correct shadow and
our iterative convolution shadows. We have defined a kernel κ
which, for a Gaussian light source, generates the correct shadow
for any occluder plane o(x) after iterating ahead to a plane at a dis-
tance d1. Next we discuss how the shadow looks at distances where
d �= d1 and compare it with how correct shadows behave at these
distances.

For the iterative approach, to reach a distance d, given slice
distance e, one must perform d/e convolutions and the convolution
becomes

n = d

e
, κ∗n

Eq. 6≈ gnμκ ,nσ 2
κ

Eq. 7= g−dμl ,dd1σ 2
l
.

If we let zd represent the iterated shadow at distance d behind an
occluder plane o, we get

zd (x) ≈ o(x) ∗ gμd ,σ 2
d
, μd = −dμl, σ 2

d = dd1σ
2
l . (8)

Now we have an expression of the shadow zd for the iterative
approach and the shadow sd (Eq. (4)) for the correct approach
and we can compare them. We compare the shadows behind the
simplest occluder possible: a sharp edge occluder represented by
the Heaviside function H . Therefore we set o(x) = H (x).

Isovalues of correct shadows behind an edge are linear.
Behind a Heaviside occluder and for any light function, the regions
of shadow of equal intensity form lines (see Appendix A.3 for the
full derivation). By solving sd (x) = s for x, we get the x-position
of shadows with strength s at distance d from a Heaviside occluder.

x(d) = d · Cs, where Cs = −L−1(1 − s) (9)

In Eq. (9), L(x) denotes the indefinite integral of l(x) and Cs

denotes a constant defined by the isoshadow strength s. The equation
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Fig. 10. Multi-material support. Model of the human heart rendered with (a) Phong shading; (b) our algorithm using different detail mapping settings for
individual structures at 10.39 frames/second. The Anatomium 3D Anatomy model was provided courtesy of CFLietzau/3DSpecial (http://www.anatomium.com/).

Fig. 11. Comparison of different convolution kernels using a low-variance light source (top row) and high-variance light source (bottom row). The frame
rates were 22.58 frames/second (2-sample ellipse), 20.34 frames/second (3-sample ellipse), 11.83 frames/second (8-sample Poisson disk), 6.71 frames/second
(16-sample Poisson disk), and 0.48 frames/second (19 × 19 Gaussian). The Stanford Bunny model was provided courtesy of the Stanford University Computer
Graphics Laboratory by the Stanford 3D Scanning Repository (http://graphics.stanford.edu/data/3Dscanrep/).

shows the linearity between the distance of the occluder d to the
shadow and the position x of the isoshadow. Intuitively, this can be
explained as observers on all points along an isoline will see the
same unblocked part of the virtual light plane. A simulation of this
behavior for a sharp edge occluder and a light with mean zero is
shown in the left part of Figure 16.

Isovalues of iterative shadows behind an edge are nonlin-
ear. Behind a Heaviside occluder and for any light function, the
regions of shadow of equal intensity are nonlinear and follow a
square root trajectory (see Appendix A.4 for the full derivation).

x(d) = −dμl + cσl

√
d

The right part of Figure 16 shows isolines for a light function with
μl = 0. When μl = 0, the first term disappears and the isolines
follow a square root trajectory in d. For noncentered lights where
μl �= 0, the result will be a sheared version of the right part of
Figure 16; the straight white isoline for shadow intensity 1

2 will
then be angled. In the next paragraph, we show that for any light,
the white 1

2 -isoline for the iterative approach is correct.

Equal characteristics for both approaches. As shown,
behind a Heaviside occluder, the correct shadow is linear whereas
the iterative shadow is nonlinear. However, for shadow intensity 1

2 ,
that is, in half shadow, the iterative shadow is linear and equal to
the correct shadow and is (see Appendix A.5 for the full derivation)
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Fig. 12. Monte-Carlo volume ray tracing of a medical computed tomog-
raphy scan (left) compared to our iterative convolution-based approach
(right) with light from different directions. Our approach performed at
9.43 frames/second while the Monto-Carlo volume ray tracer required sev-
eral seconds to converge. The MANIX dataset was provided courtesy of the
OsiriX Foundation (http://www.osirix-viewer.com/).

as follows.

x(d) = −dL−1

(
1

2

)
(10)

This particular isoline can be considered important for shadows
as it represents the centerline of the penumbra and thus conveys
in which general direction the shadow is cast. One can therefore
say that the iterative method casts shadows in the correct direction
behind a Heaviside occluder. For light sources having zero variance,
the nonlinear part falls away and the iterative model is correct
everywhere. Such light sources are point light sources creating hard
shadows due to a spike at μl .

The proofs presented for a 1D light function creating shadows
on a line can be straightforwardly extended to 2D light functions
casting shadows on planes. We describe this in Section A.6 in the
Appendix.

Fig. 13. Comparison of a sampled volumetric detail function (left) and
procedural details (right). The Stag Beetle dataset was provided courtesy of
the Institute of Computer Graphics and Algorithms, Vienna University of
Technology (http://www.cg.tuwien.ac.at/).

We have now related the iterative shadow model to correct shad-
ows. We showed that shadows will be cast in the right direction
(regardless of the targeted optimal distance d1) and that iterative
shadows have a square root falloff. Figure 17 illustrates the de-
viation from a correct shadow behind a Heaviside occluder at dis-
tances different from d1. Shadow penumbras grow with the distance
from the shadow caster in both approaches. However, the optimal
distance d1 specifies at what point the penumbra for the iterative
method matches the correct penumbra. In Figure 18 we demon-
strate the effect of changing the optimal distance factor d1 on a scene
consisting of two Heaviside occluders at different distances from
a parallel wall. The scene is shown, rendered with our method, in
Figure 18(a). The lower half of the back wall is angled at 45 degrees
so that the evolution of the shadow at increasing distance from each
shadow caster can be monitored. Figure 18(b) shows the reference
image rendered in PBRT. Figure 18(c) shows a rendering using a
convolution kernel designed for optimal shadows for the distance
of the right box, and Figure 18(d) for the left box. The blue and
red lines in Figure 18(b), (c), and (d) are correct and approximate
isoshadow lines, respectively. For each image, the outer isolines
around the left and right object have the same isovalue and the step
in shadow strength between isolines is equal. The linearity of the
isolines at increasing distance can be seen on the angled surface in
the reference rendering of Figure 18(b). The square root shape of the
corresponding isolines for our method can be seen in Figure 18(c)
and (d). These observations correspond with our analysis and are
illustrated in Figure 16 and Figure 17.
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Fig. 14. Comparison between (a) our method; (b) the physically based
PBRT renderer for three light sources with different characteristics. The
virtual light plane shown in (c) and (d) shows the corresponding PBRT
environment map projected onto a hemisphere.

Fig. 15. Demonstration of increasing uniform variance of light source
starting with zero from left to right. Ground plane is angled 45 degrees.

Fig. 16. Shadow behind a Heaviside occluder for light with mean of zero.
Left: Correct shadow. Right: Iterative convolution shadow. First and third
image show the shadows. In second and fourth image, a rainbow color map
is applied with isolines from 0.1 to 0.9 with a 0.1 increment. Straight white
line is isoline for the shadow intensity of 1

2 .

Fig. 17. Isoshadow strength behind a Heaviside occluder for Gaussian
light. Correct shadow isolines in blue, and approximate iterative shadow
isolines in red. At the target distance d1 as indicated, the iterated shadow
matches the correct shadow.

Fig. 18. Comparison between a physically based renderer (b) and our
method in (c) and (d) and for different distances.

7. DISCUSSION AND LIMITATIONS

The number of slabs used during rendering needs to be sufficiently
high to ensure appropriate sampling of the volumetric detail func-
tion. For sampled function representations we use the dimensions
of the 3D texture as a basis for automatically setting the number of
slabs while for procedural details we use a constant value. In both
cases, the chosen frequency scale is taken into account and an addi-
tional modulation factor can be specified by the user. For all images
in this article, between 400 and 800 slabs were used (the actual slab
count varies based on the viewing direction and the dimensions of
the model’s bounding box).

To reduce the number of slabs while maintaining high quality,
preintegration can be employed [Engel et al. 2001]. Figure 19 shows
a comparison of nonpreintegrated and preintegrated compositing
for different slab counts. Artifacts appear as the number of slabs
decreases, but preintegration substantially improves the appear-
ance. We note that these artifacts are mostly due to undersampling
of the volumetric detail function; shadow appearance does not
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Fig. 19. Comparison of nonpreintegrated and preintegrated compositing
for different slab counts. The frame rates were (a) 12.3 frames/second; (b)
18.5 frames/second; (c) 34.4 frames/second. The Happy Buddha model was
provided courtesy of the Stanford University Computer Graphics Labora-
tory by the Stanford 3D Scanning Repository (http://graphics.stanford.edu/
data/3Dscanrep/).

significantly change even though less convolutions are performed.
Using the results of Bergner et al. [2006], the number of slabs
could be further optimized by incorporating adaptive sampling.

Our model assumes a lighting environment which is not fixed on
a sphere around the scene, but moves on a hemisphere behind the

Fig. 20. A fence scene rendered with our method in top row and a PBRT
reference in bottom row. Increasing uniform variance from left to right of 0,
0.5, and 2.

viewer. While this is generally not suitable when it is desired to
anchor light sources within the scene, it is well-suited for viewing
individual models (akin to common camera headlights). In scien-
tific illustrations, for example, lighting commonly follows certain
conventions (e.g., coming from a top-left direction relative to the
viewer [O’Shea et al. 2008]). Indeed, one promising application we
envision for our method is the high-quality visualization of indi-
vidual objects such as archeological artifacts. Another application
scenario is the visualization of medical or biological imaging data
where it is frequently desired to combine volume rendering with
polygonal meshes derived from segmentation masks. Our approach
enables such a hybrid visualization with interactive high-quality
lighting effects.

One current limitation of our implementation is that shadows will
only be cast by objects that are rendered. Objects outside the view
frustum will not contribute to the shadow in the visible scene. In
order to remedy this, the viewport size during rendering would have
to be increased accordingly. A further limitation of our approach is
that light sources with very low variances tend to receive too much
blur. This is due to the use of discrete arithmetics on the GPU. Fil-
ters with narrow support, such as a Dirac peak, representing a point
light source will at most light angles be positioned between sample
points. Interpolation will then smear the Dirac peak over more sam-
ples and increase its variance. This is illustrated in Figure 20 which
shows renderings of a fence with varying vertical pole sizes and
distances. A horizontal pole extends through about three quarters of
the fence length. The top row shows our renderings with one light
source of increasing uniform variance from left to right of 0, 0.5,
and 2. The bottom row shows reference renderings with a corre-
sponding light source in PBRT. Higher variances are simulated well
as the correspondence with PBRT for the middle and right column
demonstrates, but the zero-variance light source is not accurately
represented. Figure 20 also demonstrates how our method works
for objects casting shadows from several slices. Since the fence is
pointing towards the viewer, it is being sliced through front-to-back
and the shadow on the ground is accumulated from all slice depths.
Therefore the penumbras are not identical, although close to the
reference rendering.
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Fig. 21. Rendering of a sphere with different lighting. From left to right:
Incoming light at angles 0, 22.5, 45, and 67.5 degrees. From top to bottom:
Lambertian shading, scattering with σ 2

x = σ 2
y = 0, with σ 2

x = σ 2
y = 4 and

σ 2
x = 4, σ 2

y = 0 rotated 45 degrees.

The form factor F (y) from Eq. (1) for producing surface shading
is not explicitly calculated in our method. Iterative slicing implicitly
generates surface shading since any angled surface will be sliced
and consequently cast shadows on itself. This shadow is comparable
but not equal to Lambertian surface shading. In Figure 21, we
show renderings of spheres under different light conditions and
compared to Lambertian shading. Notice that when the variance is
uniformly zero with direct light at angle 0 degrees, the sphere is
uniformly white. This special case arises since no shadows are
cast on consecutive slices. Notice also that the variance affects the
shading. Comparing the second and third rows, it can be seen that
row three has darker shades due to convolution with a larger kernel.
For an angled surface, increasing the variance of the light will thus
darken the shading of the surface. This darkening effect can be seen
by comparing the tilted lower part of the wall in Figure 18(c) and
(d), and from left to right on the tilted wall in Figure 15.

Our method does not calculate the directional distribution of in-
coming light for each voxel, but rather a scalar value describing the
general degree of occlusion towards the light source. We are disre-
garding the 4D nature of light and cannot model phase functions as
they depend on the angular distribution of incoming light relative
to the viewpoint. However, as demonstrated in this article, we can
generate plausible illumination effects. Yu et al. [2009] show that
for indirect illumination, the degree of accuracy is not crucial and
sometimes not even differentiable for human perception. Kozlowski
and Kautz [2007] show the same on accurate occlusions for glossy
reflections.

Complex volumetric details are difficult to handle using other
methods whereas our approach is easy to implement and only re-
quires three rendering parameters: slab distance, optimal distance,
and the number of samples in the kernel. As demonstrated in
Figure 11, the number of samples in our elliptical kernel does not
affect quality noticeably and can therefore be set to the minimum
of 2. This leaves only two parameters where slab distance can be

considered an intuitive parameter balancing speed versus sampling
quality.

For future work, it may be interesting to investigate the combina-
tion of our method with other approaches. As an example, this can be
useful for complementing other shadow methods with the volumet-
ric high-resolution procedural shadows we produce. Other methods
that have in common with our method the step of slice or layer-based
scene voxelization (such as Sun et al. [2008] and Crassin et al.
[2011] that are slice based or Kaplanyan and Dachsbacher [2010]
that use depth peeling)) are particularly easy to combine. To avoid
shadow conflicts with methods that already calculate shadows, our
shadow effects can be confined to local shadows by gradually fad-
ing out the light buffers. The method by Sun et al. [2008] could
be used to integrate refraction and caustics effects into our ap-
proach. Kaplanyan and Dachsbacher [2010] already complement
their indirect illumination method with ambient occlusion to pro-
duce high-frequency surface details. Here, our method could be a
more expressive alternative.

8. CONCLUSIONS

In this article, we have interpreted iterative convolution in context
of the light model by Soler and Sillion [1998] and presented a theo-
retical analysis of its properties. Based on the theory, we identified
an equivalence class of kernels and developed a fast convolution
kernel requiring a minimal number of samples. The theory also
showed that iterative convolution can reproduce the effect of ar-
bitrarily rotated Gaussian light sources. This analysis was verified
by performing comparisons with reference renderings. We showed
that these findings can be translated into an efficient rendering al-
gorithm for the interactive visualization of models enhanced with
dynamically changing procedural volumetric details, soft shadow-
ing, and translucency. We demonstrated that our method works well
both for sparse scenes with large shadow casters as well as for high-
frequency shadows from volumetric details.

APPENDIX

A. PROOFS AND DERIVATIONS

A.1 Correct Shadow with Convolution

We perform the u-substitution.

u = d1x−d1y+y ⇒ x = u + d1y − y

d1
,

du

dx
= d1 ⇒ dx = 1

d1
du

Inserting u, x, and dx into V (y) of Eq. (2) we get

V (y) =
∫

S

S(x − y)P (d1x − d1y + y)dx

=
∫

S

S

(
u + d1y − y

d1
− y

)
P (u)

1

d1
du (11)

= 1

d1

∫
S

S

(
1

d1
(u − y)

)
P (u)du,

which can be written as the convolution

V (y) = 1

d1
S

(
− 1

d1
y

)
∗ P (y). (12)

A.2 Approximate Shadow with Iterative Convolution

Since the light function l(x) is defined to be nonnegative and has an
integral of 1, it can be considered a statistical probability density
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Table II. Notations and Rules
Normal Statistical

1: Function p(x) Random variable P with pdf p(x), cdf P (x)

with integral 1 mean μp = E(P) and variance σ 2
p = V ar(P)

2: p(x) ∗ q(x) P + Q

3: H (x) ∗ p(x) P (x) (H :Heaviside)

4: P −1( 1
2 ) E(P)

5: f (x) = p(−x) μf = −μp , σ 2
f = σ 2

p

6: f (x) = cp(cx) μf = μp /c, σ 2
f = σ 2

p/c2 (c:constant)

7: E(aP + bQ) = aE(P) + bE(Q)

8: V ar(−P) = V ar(P)

9: V ar(P + Q)
P,Q independent= V ar(P) + V ar(Q)

function (pdf). Table II summarizes statistical facts found in any
standard statistical textbook, employed in the following proofs.
Functions p and q represent general distribution functions. For
any function p that is a pdf, we denote its random variable with
double stroke letter P and its cumulative distribution function (cdf)
with a capital letter P (Table II.1). By definition, the convolution
of two pdf’s is equivalent to the addition of their respective random
variables (Table II.2). A function convolved with the Heaviside
function becomes the indefinite integral, that is, the cdf (Table II.3).
The expectation value defines the position (P −1) of the center (0.5)
of gravity of the pdf (Table II.4). Mirroring a pdf around the y-axis
maintains its variance but negates its mean (Table II.5). Scaling
the function and the parameter of a pdf equally changes the mean
and variance as defined in Table II.6. Table II.7, and Table II.8.
Table II.9 summarizes standard statistical calculation rules on
random variables.

Expression for iterative convolution shadow. The Central
Limit Theorem (CLT) [Ash and Doleans-Dade 1999] states that
the sum of n equal independent random variables, each with finite
expectation and nonzero variance, tends towards a Gaussian distri-
bution as n increases. κ∗n can be considered as the sum of n equal
independent random variables (Table II.2), each having the same
distribution as κ . Therefore the result of the convolutions κ∗n will
tend towards the Gaussian distribution. To find the function that κ∗n

converges to, it is sufficient to find the mean and the variance of
κ∗n.

κ∗n = K + K + ..n times (Tbl.II.2) (13)

E(κ∗n) = E(K + K + ..n times) = nE(K) = nμκ (Tbl.II.7)

V ar(κ∗n) = V ar(K+K+ ..n times) = nV ar(K) = nσ 2
κ (Tbl.II.9)

Therefore κ∗n ≈ gnμκ ,nσ 2
κ

Correct shadow for a specific distance. To find out how an
iterative kernel must look so that after n iterations it achieves the
shadow that the correct approach achieves for distance d1, we solve
the following equality.

o(x) ∗ 1

d1
l

(
− 1

d1
x

)
︸ ︷︷ ︸

correct (Eq.4)

= o(x) ∗ κ∗n︸ ︷︷ ︸
iterative (Eq.5)

, κ∗n
Eq.13≈ gnμκ ,nσ 2

κ
(x) (14)

1

d1
l

(
− 1

d1
x

)
= gnμκ ,nσ 2

κ
(x) ⇒ l(x) = d1gnμκ ,nσ 2

κ
(−d1x)

l(x) = gμl ,σ
2
l
(x) where μl = −nμκ

d1
σ 2

l = nσ 2
κ

d2
1

(Tbl.II.5,II.6)

Solving for μκ and σ 2
κ : μκ = −μld1

n
σ 2

κ = σ 2
l d2

1

n

Instead of specifying the number n of iterations (slices) we want to
cover the distance d1. Thus, we specify a slice distance e and the
mean and variance become

n = d

e
⇒ μκ = −eμl σ 2

κ = d1eσ
2
l . (15)

That is, simulating a Gaussian light l(x) with mean μl and variance
σ 2

l , casting correct shadows between planes distance d1 apart, using
the slice iteration distance e, can be achieved by using the kernel
that has mean μκ and variance σ 2

κ as specified in Eq. (15).

A.3 Linearity of Correct Shadows

The linearity of shadows behind a Heaviside occluder H (x) with
transparency T will now be proven ( for simplicity, in the article the
Heaviside occluder has been set to opaque with T = 1).

Eq.4: sd (x) = o(x) ∗ 1

d
l

(
− 1

d
x

)
, o(x) = T · H (x) ⇒

sd (x) = T · H (x) ∗ 1

d
l

(
− 1

d
x

)
Tbl.II.3= T · 1

d

∫ x

−∞
l

(
− 1

d
t

)
dt

=(substitution u=− 1
d

t⇒dt=−ddu,x→− 1
d

x,−∞→∞)

T · 1

d

∫ − 1
d

x

∞
·l(u) · −ddu = −T ·

∫ − 1
d

x

∞
l(u)du = T ·

∫ ∞

− 1
d

x

l(u)du = T ·
(

lim
x→∞

(L(x)) − L

(
− 1

d
x

))

= T ·
(

1 − L

(
− 1

d
x

))

sd (x) = T ·
(

1 − L

(
− 1

d
x

))
(16)

Here, L(x) denotes the indefinite integral of l(x). Since l(x) has
area 1, the limit expression of L(x) as x goes to infinity is 1. We can
now find isoregions in the cast shadow by setting expression (16)
to a constant shadow value s in the interval (0, 1) of the penumbra
region. The x position of shadows with strength s at distance d from
a Heaviside occluder is

sd (x) = s, s ∈ (0, 1)
Eq.16⇒ T ·

(
1 − L

(
− 1

d
x

))
= s

solve for x⇒

x = d
(
−L−1

(
1 − s

T

))
,

Let Cs = −L−1
(

1 − s

T

)
then x = d · Cs. (17)

A.4 Nonlinearity of Iterative Shadows

We show that iterative shadows behind a Heaviside occluder are
nonlinear by investigating isolines of the shadow expression zd (x).

o(x) = H (x) ⇒ zd (x)
Eq.8≈ H (x) ∗ gμd ,σ 2

d
(x) ⇒
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zd (x)
Tbl.II.3≈ Gμd,σ 2

d
(x) = G0,1

(
x − μd

σd

)
Convolving a probability density function with the Heaviside func-
tion results in the corresponding Gaussian cumulative distribution
function (cdf) G. This cdf consists of the error function which is not
algebraically defined. Therefore, when solving for x, a closed-form
expression does not exist. However, we use the standard equiva-
lence expressed by the right equality to define our isolines without
solving for x. Setting x to x = μd +c1σd where c1 is some constant
results in the same function argument and thus the same shadow
strength irrespective of μd and σd . Since c1 is a constant defined by
a function of the isoshadow strength, the isocurves for a light l are
given by

x = μd + c1σd

Eq.8= −dμl + c1

√
d · d1σ

2
l = −dμl + cσl

√
d,

where c = c1
√

d1 is a constant.

A.5 Equal Characteristics for Both Approaches

We calculate an expression for the shadow of strength 1
2 behind an

opaque Heaviside function for each approach and show that they
are equal. We set s = 1

2 in Eq. (17) to find the isoregions of half
shadow in the correct approach.

s = 1

2
⇒ x = d · −L−1

(
1 − 1

2

)
⇒ x = −dL−1

(
1

2

)
Here L−1( 1

2 ) is the x value of the center of gravity of the light
function. If the light function is symmetric, then L−1( 1

2 ) is simply
the center of the nonzero interval of the light function.

We now find the expression of the regions with a shadow intensity
of 1

2 for the approximate approach for distance d and slice distance

e. Let t(x) = κ(x)∗
d
e

Eq.5: zd (x) = H (x) ∗ t(x)
Tbl.II.3= T (x)

zd (x) = 1

2
⇒ T (x) = 1

2
⇒ x = T −1

(
1

2

)
Tbl.II.4= E(T)

= E
(
κ(x)∗

d
e

)

x
Eq.13= d

e
E(κ)

Eq.15= d

e
(−eE(L)) = −dL−1

(
1

2

)
.

This proof does not build on the Central Limit Theorem. It only
assumes that μκ = −eμl (see Eq. (15)) and is therefore true for any
variance and any (also non-Gaussian) light source l(x). We have
shown that from a hard edge, the contour of an iterated shadow
traced along the 1

2 isoline is correct. This also shows that iterative
shadows are cast in the physically correct direction behind a sharp
(Heaviside) edge.

A.6 Extension to 2D Light Functions

In Eq. (2), the variables x and y are extended to 2D and the outer
multiplication with 1

d1
is replaced by 1

d2
1

due to the double integral

(see also Eq. (11) and the similar, approach in Soler and Sillions’
work [Soler and Sillion 1998]). The Heaviside function is extended
into 2D by extruding it along the y-axis: Hx(x, y) = H (x). The
convolution in Eq. (16) will now be a double integral. By performing
u-substitution for both integrals, the 1

d2
1

factor will disappear. Then

Fig. 22. Finding the variance of an elliptical kernel.

the inner integral can simply be regarded as the 1D pdf of the 2D
light function collapsed onto the x-axis. This pdf takes the place
of l(u) in the following proofs. The linearity proofs of Eq. (10)
(Eq. (17) in this Appendix) follow directly.

A.7 Elliptic Sampling for a Specified Variance

In this section we find the shape of an ellipse so that the projection
of equidistant points on the ellipse onto the x- and y-axis has a
given variance.

The equation for an ellipse with axes a and b is shown top left in
Figure 22. We rewrite the ellipse formula for y to get the expression
of the ellipse segment for the lower right quadrant, shown in red.
Now the density of points at x for the red curve is proportional to
the curve length g(x) = √

1 + y ′2. To simplify the calculation we
fix a to a = 1. Then the curve length is

g(x) =
√

1 + y ′2 =
√

1 + b2
x2

1 − x2
since y ′ = b

x√
1 − x2

.

We define the area of g(x) to be c: c = ∫ a

0 g(x)dx, a = 1. This
integral is the complete elliptic integral of second kind and has
no closed-form solution. Due to symmetries, the function g(x)/2c
for positive x, and its reflection around the y-axis, g(−x)/2c, for
negative x, has area 1 and is the pdf of the point density on the
x-axis. We label this function h(x) and for a = 1, its variance can
be expressed as

V ar(h(x)) =
∫ a

−a

x2h(x)dx
even= 2

∫ a

0
x2 g(x)

2c
dx

= 1

c

∫ a

0
x2g(x)dx.

This expression also has no closed-form solution. Since the value
of h(x) depends only on b, its variance is a function of b which
we call varx(b). Thus varx(b) is the variance of the point density
projected on the x-axis of equally distributed points on an ellipse
with x-radius of 1 and y-radius of b. Using a symbolic solver, we
get

V ar(h(x)) = varx(b) =
2b2 − 1 − b2 EllipticK(

√
1−b2)

EllipticE(
√

1−b2)

−3 + 3 b2
,

where EllipticK is the complete elliptic integral of the first kind
and EllipticE is the elliptic integral of the second kind. The func-
tion varx(b) is plotted in the leftmost column of Figure 23.

We let Vx and Vy respectively be the x and y variances of a unit
ellipse with radii a = 1− t and b = t . We now derive an expression
for Vx and Vy based on varx . From the unit ellipse radius t , we
find the x variance of the ellipse having a = 1 but with the same
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Fig. 23. Left: V ar(h(x)) for b increasing and a = 1. Middle: x and y

variance for ellipse parameterized by t . Right: Mapping from variance ratio
Vy/Vx to unit ellipse radius having this variance ratio.

radii ratio as the unit ellipse: varx( t

1−t
). This ellipse is scaled back

so that a = 1 − t , by scaling the variance with its square (since
V ar(aX) = a2V ar(X)). Therefore Vx(t) = (1 − t)2 · varx( t

1−t
),

and due to symmetry we have Vy = Vx(1 − t). Vx is shown in
green and Vy in red in the middle plot. From Vx and Vy , we make a
function mapping t to the ratio Vy/Vx . We then invert this function
numerically so we have a function mapping from Vy/Vx to t shown
right in Figure 23. Now the functions Vx and Vy/Vx are used as
described in the main article to find the major and minor axis of any
ellipse satisfying a specific x and y variance. There they are called
abT oV arx() and ratioT oab(), respectively.
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