Aging - cognition, brain imaging and genetics

Multimodal MRI recordings, image processing, and data analysis

Arvid Lundervold MD, PhD

Neuroinformatics and Image Analysis Laboratory Neural Networks Research Group Department of Biomedicine, University of Bergen, Norway https://www.ub.no/re/neuronet

Visual Computing Forum

http://www.ii.uib.no/vis/vcf

1 March 2013

Arvid Lundervold (www.uib.no)

Aging - cognition, brain imaging and genetics

OUTLINE

Multimodal MRI

= Collection of MRI recordings obtained with different MR measurement

techniques from the same subject - in the same imaging session

- Structural 3D MRI (sMRI)
- Diffusion tensor imaging (DTI)
- Functional BOLD MRI (fMRI) in the resting state

↑ Blood Oxygen Level Dependent contrast

Image processing workflows

- Brain morphometry (FreeSurfer)
- White matter integrity and fiber tracking (Diffusion Toolkit & TrackVis)
- Resting state networks (the FCON1000 scripts)

• Longitudinal data analysis

- Linear mixed models (R: 1mer in the 1me4 package)
- Nonlinear mixed effects estimation (MATLAB: nlmefit)

Data organization

The multimodal MRI protocol Wave12005, Wave22008/9, Wave32011/12

1.5 T GE Signa Excite MRI scanner with a standard 8 chn receive only head coil:

Series		Pulse sequence parameters	W1	W2	W3
1	Localizer 2D	$TR/TE = 7.8[ms]/1.7[ms]/30[^{O}]$; acq.voxel: $1.0 \times 1.0 \times 5.0 \ [mm^{3}]$; 3 [imgs]	×	×	×
2	Ax PD/T2 2D FSE	$TR/TE_1/TE_2/FA = 3840/12.1/84.9/90$; voxel: $0.94 \times 0.94 \times 4.0$; 52	x		
3	Sag T1 3D FSPGR IR preped	TR/TE/TI/FA = 9.45/2.41/450/7; voxel: 0.94 × 0.94 × 1.40; 124	×		
4	Sag T1 3D FSPGR IR preped	[same as 3 to improve SNR for FreeSurfer segmentation]	×		
5	Sag T1 3D FSPGR IR preped	$TR/TE/TI/FA = 9.12/1.77/450/7$; voxel: $0.94 \times 0.94 \times 1.40$; 124		×	x
6	Sag T1 3D FSPGR IR preped	[same as 5 to improve SNR for FreeSurfer segmentation]		×	×
7	Ax DTI, EP SE, 26 slices	TR/TE/FA = 7900/97.1/90; 25 b=1000, 5 b=0; voxel: 0.94×0.94×4.0; 780	x		
8	Ax DTI, EP SE, 25 slices	TR/TE/FA = 7900/104.8/90; 25 b=1000, 5 b=0; voxel: 0.94 × 0.94 × 4.0; 750		×	
9	Ax DTI, EP SE, 25 slices	TR/TE/FA = 7900/110.5/90; 25 b=1000, 5 b=0; voxel: 0.94 × 0.94 × 4.0; 750			×
10	Ax fMRI GRE EPI Resting	TR/TE/FA=2000/50/90; voxel: 3.75×3.75×5.5; 25 slices; 256 volumes; 6400		×	×
11	Ax fMRI GRE EPI Fingertap	TR/TE/FA=3000/50/90; voxel: 3.75×3.75×5.5; 25 slices; 120 volumes; 3000		×	×
12	Ax GRE Haemoseries	TR/TE ₁ /TE ₂ /FA=540/15/67/20; voxel: 0.94×0.94×4.0; 25 slices; 50			×

FSE=Fast spin-echo; FSPGR=Fast spoiled gradient-echo; EP SE=Echo-planar spin-echo; GRE EPI=Gradient-echo echo-planar; IR=Inversion recovery.

- Image acquisitions being analysed in the project¹:

 - \rightarrow Resting state fMRI
 - \rightarrow Structural 3D Anatomy 2 \times 124 images / subject / wave (series 5 & 6)
 - \rightarrow Diffusion tensor imaging 750 images / subject / wave (series 9)
 - 6400 images / subject / wave (series 10) -

¹Up until now ...

Arvid Lundervold (www.uib.no)

An example of multimodal MRI recordings

Voxels and their constituents in brain MRI

From Baars & Gage: Cognition, Brain, and Consciousness (2010)

Image processing workflows - FreeSurfer

Brain segmentation:

Brain surface reconstruction and cortical parcellation:

1 Left-Cerebral-Exterior 2 Left-Cerebral-White-Matter lh.pial lh.pial latera medial 3 Left-Cerebral-Cortex 4 Left-Lateral-Ventricle view view 5 Left-Inf-Lat-Vent 6 Left-Cerebellum-Exterior 7 Left-Cerebellum-White-Matter 8 Left-Cerebellum-Cortex 9 Left-Thalamus 10 Left-Thalamus-Proper 11 Left-Caudate 12 Left-Putamen 13 Left-Pallidum 14 3rd-Ventricle 15 4th-Ventricle 16 Brain-Stem 17 Left-Hippocampus 18 Left-Amyodala 19 Left-Insula 20 Left-Operculum 21 Line-1 22 Line-2 23 Line-3 24 CSF FreeSurfer 5 1 & Freeview DE Lafe Lacian

FreeSurferColorI UT

0 Unknown

Image processing workflows - Diffusion Toolkit

aging_anatomy_dti_integration_centos_macos_al20130228.m

Arvid Lundervold (www.uib.no)

Principal diffusion direction: $\mathcal{E}_1 = (\mathcal{E}_{1x}, \mathcal{E}_{1y}, \mathcal{E}_{1z})$ Fractional anisotropy ("white matter integrity"):

 $FA = \sqrt{\frac{1}{2}} \frac{\sqrt{(\lambda_1 - \lambda_2)^2 + (\lambda_1 - \lambda_3)^2 + (\lambda_2 - \lambda_3)^2}}{\sqrt{(\lambda^2 + \lambda^2 + \lambda^2)}} \quad 0 \le FA \le 1$

 $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0$

Image processing workflows - TrackVis

Image processing workflows - FCON1000 scripts

Longitudinal data analysis (LDA) - Linear mixed-effect models

Let y_{ij} denote the response at the *j*th observation of the *i*th subject; i = 1, ..., N, $j = 1, ..., n_i$, and x_{ij} be the corresponding value of the explanatory (covariate) variable *x*, then the standard linear mixed-effects model with random intercept b_{0i} and random slope b_{1i} is:

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + (b_{0i} + b_{1i} x_{ij}) + \epsilon_{ij}$$

- the β_k s are fixed effect parameters
- the *b_{ki}*s are random effect parameters
- ϵ_{ij} is the error for observation *j* in subject *i*, where the errors for subject *i* are assumed to be multivariate normally distributed

CVLT LongDelay - fit a linear mixed-effect model

Age_{ij} as a predictor for $y_{ij} = \text{LongDelay}_{ij}$ across subjects $i = 1, \dots, 106$ and waves j = 1, 2, 3: $y_{ij} = \beta_0 + \beta_1 \text{Age}_{ij} + (b_{0i} + b_{1i} \text{Age}_{ij}) + \epsilon_{ij}$ (CVLT_analysis_long_al20130213.R)

11 / 13

Data organisation (SVN/mySQL - Sebastian Bablock, 2009)

Thanks !

UiB project members

and collaborators:

Erlend Hodneland Biomed/math. post doc Martin Ystad Biomed, MD, PhD Steinunn Adolfsdottir IBMP, PhD student Judit Haasz Biomed, MD PhD student Erling Tielta Westlve Biomed, MD PhD student Alexandra Vik IBMP. PhD Rune Eikeland IBMP, PhD Erik Hanson Math, PhD Martin Andersson IBMP, PhD Jonn-Terje Geitung Radiology, HDS Tom Eichele Neurology/IBMP, MD, PhD Eike Wehling IBMP, post doc Are Losnegård Biomed, PhD student Ivar Reinvang UiO Thomas Espeseth UIO / IBMP Tessa Welte Tu/E, Eindhoven, Netherlands Clément de Ribet ISIMA, Blaise Pasacal University, FR MedViz UIB / HUS / CMR The Vis Group **UiB / Informatics**

www.neuroinformatics-imageanalysis.org