Smart Visualization in Medicine

Stefan Bruckner

Department of Informatics University of Bergen UNIVERSITETET I BERGEN

"Smart" Visualization

- Alternative terms: knowledge-assisted, knowledge-based, etc.
- Incorporate domain knowledge into the algorithm design
- Knowledge can be about data, user intent, and algorithm behavior
- "Smartness" comes from the effective use of existing information

Levels of Smartness

• Technique level: consider the fact that the data has been generated for a reason

• **Parameter level:** recognize that not every part of the parameter space is meaningful

• Interface level: exploit knowledge about the performance of techniques/parameters

Visualization in Radiology

- Different imaging devices (CT, MRI, ...)
- Archival of image data using PACS (Picture Archiving and Communication Systems)
- Imaging devices, output devices, workstations, and PACS are interconnected via the DICOM standard

Vessel Investigation (1)

Vessel Investigation (2)

- High-throughput scenario, radiologist has no time to "play around"
- Many slices to inspect: time-consuming and error prone
- Mental reconstruction of the vessel tree can be difficult

Overall goal: make examination as safe and fast as possible

3D Visualization Methods

DVR – Direct Volume Rendering

MIP – Maximum Intensity Projection

DVR vs. MIP (1)

DVR Direct Volume Rendering

- Physically-based
- Optical model for emission & absorption
- May require complex transfer function
- Visual cues due to accumulation and shading

MIP Maximum Intensity Projection

- Practically-motivated
- Project maximum value along each viewing ray
- Suffices with window/level setting
- Spatial ambiguities caused by orderindependency

DVR vs. MIP (2)

DVR Direct Volume Rendering

- Physically-based
- Optical model for emission & absorption
- May require complex transfer function
- Visual cues due to accumulation and shading

MIP Maximum Intensity Projection

- Practically-motivated
- Project maximum value along each viewing ray
- Suffices with window/level setting
- Spatial ambiguities caused by orderindependency

Volume Ray Casting

Maximum Intensity Projection

data value maximum value

Direct Volume Rendering

Maximum Intensity Difference

data value maximum value

 Difference between the data value at the i-th sample along a viewing ray and the current maximum

Maximum Intensity Difference

data value maximum value

 Reduce already accumulated opacity along the ray based on maximum intensity difference

Direct Volume Rendering

Max. Int. Difference Accumulation

Max. Int. Difference Accumulation

MIDA = DVR + MIP (1)

DVR – Direct MoliDA e-Relagioning Intensity Difference Ataximulation

MIDA = DVR + MIP (2)

DVR

MIDA

MIP

MIDA

From DVR via MIDA to MIP

Limitations of 3D Visualizations

- MIP & MIDA only incorporate information about data value semantics
- No knowledge about the geometrical arrangement of the focus object is used
- Detailed assessment of the vessel lumen is difficult

Curved Planar Reformation (CPR)

Advantages of CPR

MIP Maximum Intensity Projection

DSA Digital Subtraction Angiography

CPR Curved Planar Reformation

Beyond CPR

- Drawbacks of CPR
 - Many images from various viewing angles
 - Extensive browsing through images
 - Cumbersome to memorize particular regions

Solution: aggregate rotations into a single image

Curvicircular Feature Aggregation

3D vs. CPR vs. CFA

Curved Planar Curvicircular Feature 3D Visualization Reformation (CPR) Aggregation (CFA)

straight rays

cut through vessel

curved rays

Traversal

Sampling

Aggregation

Various methods possible: maximum (MIP), minimum (MINIP), MIDA, DVR, etc.

Display

Context

Stability

Centerline only has limited accuracy Investigate changes caused by small variations

One aggregated value for every circular ray

Variance defines stability

Indicator of centerline centeredness Overlaid for visual guidance

Stability

Phantom Data Set (1)

39

Phantom Data Set (2)

MIP Stefan Bruckner

40

Presentation

Stefan Bruckner

Vessel Stenosis

Vessel Occlusion

A REAL PROPERTY AND A REAL

Demonstration

Medical Workstations

- Multiple high-resolution diagnostic monitors
- Many different views (identified by weird acronyms)
- Parameters, options, and settings gallore

Smart View Concept

- Menues, panels, and toolbars are artificial and unfamilar constructs (a lightbox has no menu)
- Images should be central, radialogists know how to interpret them
- Usefulness of individual views depends on the context

Approach: avoid additional scaffolding – the image itself becomes the user interface

Smart Views (1)

Annotation	Rule Specification
User Interaction	
View Ranking	
Views	

Data Annotation (1)

Computed Tomography Angiography
Contrast agent for vessel enhancement

Data set consists of slice images

512 x 512 x 1500

- Acyclic graph
- Edges are segments between branchings
- Segments can be selected
- Defined by radiological assistants

CTA

Data Annotation (2)

Smart Views (3)

Data Annotation	Vessel Layer	Bone Layer	Slice Layer	Vessel Tree Layer	Rule Specification
User Interaction					
View Ranking					
Views					

Rule Specification (1)

- Relations between input and output
- User-defined rules
- If-then clauses

Rule Specification (2)

- Rules stored in an external file
- Adapted to specific demands of users
- Defined by domain experts
- Flexible extension by adding new rules
- Human readable form

Smart Views (4)

Data Annotation	Vessel Layer	Bone Layer	Slice Layer	Vessel Tree Layer	Rule Specification
User Interaction					If tissue then use DVR
View Ranking					
Views					

User Interaction

- User defines a ROI by moving the mouse
- Compute input values for all variables
- Layers are used inside the ROI

- Sum over all pixels inside the ROI
- Pixels weighted with distance to center
- Specific layers for input variables

Smart Views (5)

View Ranking

- Fuzzy logic for the inference system
- ⇒Fuzzy Inference System
- ⇒Fuzzy rules specified by domain experts

Smart Views (6)

Integrated Smart Views

Demostration

What's Next?

- Adaptive rule base: smart systems should become smarter over time
- Incorporate mechanisms to capture data about the success and failure of an operation
- Employ machine learning methods to improve the system based on user actions
- Use acquired information for goal-directed exploration of the algorithm space

Conclusion

- Smart visualization means using the right tool (algorithm) for the job (task)
- Knowledge about both task and algorithm behavior is essential

Challenge: acquire and use this knowledge in a systematic manner

Acknowledgements: Gabriel Mistelbauer, Rüdiger Schernthaner, Ivan Baclija, Arnold Köchl, Milos Srámek, Armin Kanitsar, M. Eduard Gröller

Smart Visualization in Medicine

THANK YOU FOR YOUR ATTENTION

