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Abstract. Shape optimization is applied to time-dependent trailing-edge flow in order to minimize aerodynamic
noise. Optimization is performed using the surrogate management framework (SMF), a non-gradient based pattern
search method chosen for its efficiency and rigorous convergence properties. Using SMF, design space exploration
is performed not with the expensive actual function but with an inexpensive surrogate function. The use of a polling
step in the SMF guarantees that the algorithm generates a convergent subsequence of mesh points in the parameter
space. Each term of this subsequence is a weak local minimizer of the cost function on the mesh in a sense to be
made precise later. We will discuss necessary optimality conditions for the design problem that are satisfied by the
limit of this subsequence. Results are presented for an unsteady laminar flow past an acoustically compact airfoil.
Constraints on lift and drag are handled within SMF by applying the filter pattern search method of Audet and
Dennis, within which a penalty function is used to form and optimize a surrogate function. Optimal shapes that
minimize noise have been identified for the trailing-edge problem in constrained and unconstrained cases. Results
show a significant reduction (as much as 80%) in acoustic power with reasonable computational cost using several
shape parameters. Physical mechanisms for noise reduction are discussed.
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1. Introduction

Reduction of noise generated by turbulent flow past an airfoil trailing-edge is a challenge in
many engineering applications including airframe noise, submarine detection, wind turbine
design, and rotorcraft applications. Aeroacoustics problems related to such applications
necessitate the use of modern computational techniques such as large-eddy simulation (LES)
in order to capture a wide range of turbulence scales which are the source of broadband
noise. Much previous work has focused on development of accurate computational methods
for the prediction of trailing edge noise. For instance, aeroacoustic calculations of the flow
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over a model airfoil trailing edge using LES and aeroacoustic theory have been presented
in Wang and Moin (2000) and were shown to agree favorably with experiments. To make
the simulations more cost-effective, Wang and Moin (2002) successfully employed wall
models in the trailing-edge flow LES, resulting in a factor of ten reduction in computational
cost with minimal degradation of the flow solutions. With the recent progress in simulation
capabilities, the focus can now move from noise prediction to noise control. The goal of the
present work is to apply shape optimization to the trailing edge flow previously studied, in
order to control aerodynamic noise. In the work presented here, the surrogate management
framework, developed in Booker et al. (1999) and Serafini (1998), is used to optimize a
trailing-edge shape for noise reduction. An unsteady laminar flow with vortex shedding is
used for validation of the optimization method, using several shape design parameters and
constraints on lift and drag. The laminar problem considered here is meant to act as a model
problem for validation of the optimization method, with the intention of extending the work
to turbulent flow in the future.

1.1. Choice of optimization method

One general distinction among optimization techniques is between gradient-based methods
and non-gradient-based methods. The choice of method for a particular problem depends on
factors such as the cost of evaluating the function, the availability of gradient information,
the level of noise in the function, and the complexity of implementation. Gradient informa-
tion is generally obtained using adjoint solutions or finite difference methods. Non-gradient
based methods include pattern search methods, approximation models, response surfaces
and evolutionary algorithms. There are several considerations in choosing a tractable opti-
mization method for the trailing-edge problem. The primary concern is the computational
expense of the function evaluations, especially when each function evaluation requires a
large-eddy simulation of turbulent flow. Other considerations are availability of gradient
information and robustness of the optimization method.

Calculation of cost function gradients with respect to the control parameters is the main
challenge for application of gradient-based optimization methods to the trailing-edge prob-
lem. Adjoint solvers have been applied widely in aeronautics problems to obtain gradient
information for use with standard gradient descent methods. Unlike finite-differences, the
cost of obtaining gradients using an adjoint solver does not grow with the number of opti-
mization parameters. The efficiency of this technique has been successfully demonstrated
by Jameson et al. (1998) and Pironneau (1984). To address the difficulties in implementa-
tion, there has been considerable work in the development of automatic differentiation tools
(see Bischof et al., 1992, for example). However, adjoint methods still present difficulties
for time-accurate calculations, particularly with regard to flow field data storage since the
adjoint equations must be integrated backwards in time. Additionally, adjoint solvers are not
portable from one flow solver to another, and the addition of constraints can present signifi-
cant added expense. These issues have previously been a roadblock for shape optimization
in time-dependent flow problems. In this work, we address these difficulties through the
use of derivative-free methods.
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Approximation modeling is a general term for methods which use surrogate functions to
approximate the cost function. In general, one constructs a surrogate function to interpolate
a set of known data points. In the case that the surrogate interpolant is a polynomial, the
surrogate is called a “response surface” (Myers, 1971). Other commonly used surrogate
functions are splines and Kriging functions. Several surrogate-based optimization methods
have been developed for engineering problems which require the use of expensive numerical
codes. Gradient information for these problems is often difficult or impossible to obtain. In
these methods, optimization may be performed not on the expensive actual function, but
on the surrogate, which is cheap to evaluate. For example, surrogate functions have been
incorporated into a trust region method by Alexandrov et al. (1998) and Chung et al. (2002),
and have also been used by Ong et al. (2003) in evolutionary algorithms to reduce the cost
of optimization. An overview of the use of surrogate methods in engineering is given in
Guinta (2002).

Another attractive class of methods used in derivative-free optimization are pattern search
methods. This mesh-based class of methods offers a flexible framework for optimization in
problems with little or no available gradient information, and also provides robust conver-
gence properties. The convergence of pattern search methods has been studied extensively
by Audet and Dennis (2000, 2003), Audet (2002), and Torczon (1997). Convergence results
for problems with bound, linear and nonlinear constraints have been derived by Lewis and
Torczon (1999, 2000, 2002). The surrogate management framework (SMF) (Booker et al.,
1999; Serafini, 1998) was developed to increase the efficiency of pattern search methods
for expensive problems by incorporating the use of surrogate functions. This method falls
into both the categories of approximation modeling methods and pattern search methods.
Use of the SMF method has been demonstrated, among others, in Booker et al. (1999)
and Serafini (1998), where the method was successfully applied to a helicopter rotor blade
design problem with 31 design variables. Mixed variable problems with bound and lin-
ear constraints have been studied by Audet and Dennis (2000) and Abramson (2002),
respectively.

The SMF method provides a robust and efficient alternative to traditional gradient meth-
ods. In this work, the SMF method is applied for trailing-edge optimization in a time-
dependent flow problem. Several interesting optimal shapes have been identified, all of
which result in significant reduction of vortex-shedding noise. In particular, the develop-
ment of a trailing-edge bump in the constrained case is an unexpected result which illus-
trates the trade-off between noise reduction and loss of lift. The remainder of the paper is
outlined as follows. Formulation and cost function definition are given in Section 2. An
introduction to surrogate methods is given in Section 3 and the concept is illustrated using
a one-parameter example. In Section 4, the SMF algorithm is outlined in full, including a
discussion of Kriging surrogate functions. Results are presented using the SMF method for
the trailing-edge problem with two parameters in Section 5. Constraints are then applied
using the filter method of Audet and Dennis (2000) in conjunction with a penalty function.
Implementation of this method is discussed in Section 6. In Section 7, constrained opti-
mization results are presented along with unconstrained ones using five shape paraemters,
and physical mechanisms for noise reduction are discussed. We conclude with discussion
and outlook in Section 8.
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Figure 1. Blake airfoil used in unsteady laminar flow problem. The right half section of the upper surface is
allowed to deform.

2. Problem formulation

The general optimization problem may be formulated with bound constraints as follows,

minimize J (x)
(1)

subject to x ∈ �.

In the above problem statement, J : R
n → R is the cost function, and x is the vector of

design parameters. The parameter space is defined by � = {x ∈ R
n | l ≤ x ≤ u}, where

l ∈ R
n is a vector of lower bounds on x and u ∈ R

n is a vector of upper bounds on x . In the
present problem, the function J (x) depends on the solution of the Navier-Stokes equations,
which allows us to compute the acoustic source.

In this work, the surrogate management framework is implemented and validated for
optimization of a time-dependent flow problem. The airfoil geometry is shown in Figure 1
and is a shortened version of the airfoil used in experiments of Blake (1975). The airfoil
chord is 10 times its thickness, and the right half of the upper surface is allowed to deform.
The flow is from left to right and results presented in this work are at a chord Reynolds
number of Re = 10, 000.

2.1. Cost function definition

Before discussion of the optimization method, we define the cost function corresponding
to noise generation. For unsteady laminar flow past an airfoil at low Mach number, the
acoustic wavelength associated with the vortex shedding is typically long relative to the
airfoil chord. Noise generation from an acoustically compact surface can be expressed
using Curle’s extension to the Lighthill theory (Curle, 1955). Based on this, a cost function
directly proportional to the total radiated acoustic power can be derived (Marsden et al.,
2002). It is given by the following expression

J =
(

∂

∂t

∫
S

n j p1 j (y, t)d2y
)2

+
(

∂

∂t

∫
S

n j p2 j (y, t)d2y
)2

, (2)

where pi j = pδi j − τi j is the compressive stress tensor, composed of pressure and viscous
stress, n j is the direction cosine of the outward normal to the airfoil surface S, and y is
the source field position vector. The overbar denotes time-averaging, and repeated indices
follow the usual summation convention. All variables have been made dimensionless, with
airfoil chord C as the length scale, free stream velocity U∞ as velocity scale, and C/U∞ as
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the time scale. The pressure is normalized by ρU 2
∞, where ρ is the free-stream density. The

radiation is of dipole type, caused by the the fluctuating lift and drag forces. More details
on the derivation of the cost function are documented in Marsden et al. (2002). Further
discussion of the computation of airfoil self-noise due to vortex shedding may be found in
Wang et al. (1996).

The cost function J depends on control parameters corresponding to the airfoil surface
deformation. Each parameter corresponds to a deformation point on the airfoil surface,
and its value must be within prescribed allowable bounds. The value of each parameter is
defined as the displacement of the control point relative to the original airfoil shape, in the
direction normal to the surface. A positive parameter value corresponds to displacement
in the outward normal direction, and a negative value corresponds to the inward normal
direction. A spline connects all the deformation points to the trailing edge point and the
left (un-deformed) region (see Figure 1) to give a continuous airfoil surface. Both ends of
the spline are fixed. While the surface must be continuous and smooth on the left side, the
trailing edge angle is free to change.

2.2. Cost function evaluation

For a given set of parameter values, there is a unique corresponding airfoil shape. To calcu-
late the cost function value for a given shape, a mesh is generated, and the Navier-Stokes
equations are integrated for sufficiently long time to wash out the initial transients arising
from the shape change. A finite difference code discussed in Wang and Moin (2000) is
used to solve the time-dependent incompressible two-dimensional Navier-Stokes equations
in generalized curvilinear coordinates. The mesh is a C-type mesh consisting of approxi-
mately 131,000 cells. Second-order central difference is used for spatial discretization on
the staggered mesh. Time advancement is done with a fractional-step type method, with
the Crank-Nicolson method for viscous terms, and third order Runge-Kutta for convective
terms. A pressure Poisson equation is solved using a multigrid method to enforce continu-
ity. The no-slip velocity boundary condition is enforced on the airfoil surface, and a fixed
uniform velocity is enforced on the C-shaped inlet boundary. At the downstream boundary,
a convective outflow condition is applied to allow the vortical disturbances to smoothly
leave the domain.

Because the flow has unsteady vortex shedding, the cost function is oscillatory. In the
optimization procedure, the mean cost function J (cf. (2)) is used, which is obtained by
averaging in time until convergence. An example of the oscillatory cost function, and
time averaged value is shown in Figure 2. The case shown corresponds to the origi-
nal airfoil shape. With each shape modification, the flow field is allowed to evolve for
sufficiently long time to establish a new quasi-steady state before the time averaging is
taken.

Although the flow under consideration is laminar, there are significant computational
costs associated with evaluating the cost function. In order to sufficiently converge the cost
function value for a given airfoil shape, roughly 24 hours of computer time are required
using 4 processors of a parallel SGI O3K machine. These costs will increase substantially
when optimizing the trailing-edge shape in turbulent flow in future work.
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Figure 2. Instantaneous (thin line) and time-averaged (thick line) cost function vs. time. Oscillatory cost function
is time averaged until the mean converges. The case shown is for the original airfoil shape.

3. Introduction to surrogate optimization

Before outlining the SMF algorithm in detail, we will first look at a simpler method, which
we term the ‘strawman’ method, to gives a flavor of optimization using surrogates. Use of
approximation modeling methods is also illustrated with example functions in Torczon and
Trosset (1998). The strawman method is simply implemented as follows.

Let us assume we wish to find a minimum of the one-dimensional function y = f (x)
within an allowable domain xmin ≤ x ≤ xmax. First, we begin with a set of initial data
points x = [x1, x2, . . . , xn] where the function values are known. A surrogate function is
constructed to fit through the known data points and approximate the actual function. We
express the surrogate function as ŷ = f̂ (x). Because the surrogate function is inexpensive
to evaluate, we can easily search for the minimum of the surrogate (within the allowable
range of x) using standard optimization methods. In each iteration of the stawman method,
the surrogate is used to predict the minimizer of the actual function. Then the actual function
value is computed at the predicted minimizer and the surrogate is updated to incorporate
the new data. This process continues iteratively until convergence. Possible criteria for
convergence are when sufficient cost function reduction has been acheived, or when the
incumbent (the best point found so far) remains unchanged from one iteration to the next.
In summary, the steps in the strawman algorithm (for one or more parameters) are as follows.

1. Fit a surrogate function through the set of known data points
2. Estimate the function minimizer using the surrogate function
3. Evaluate the true function value at the estimated minimum
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Figure 3. One parameter case with cubic spline as surrogate function. Each plot shows mean cost function J
vs. shape parameter a where a = 0 corresponds to the original shape. Solid line is surrogate function fit, dots are
known function values.

4. Check for convergence
5. Update surrogate using new data points
6. Iterate until convergence

To demonstrate the use of the strawman algorithm with surrogates, we present results
for optimization of the trailing-edge shown in Figure 1 using a single parameter a. The
value of a determines the normal displacement of a control point on the surface, with a
negative value corresponding to inward displacement and a positive value corresponding to
outward displacement, as described in Section 2.1. The control point is centered between the
trailing-edge and the left side of the deformation region and the bounds on its displacement
are −0.05 ≤ a ≤ 0.02. For reference, the initial maximum thickness of the original airfoil
is 0.1, and the chord length is unity. Figure 3 shows the evolution of the surrogate spline
function as data points are added to the surrogate. The first plot, on the upper left shows a
linear fit to the two initial data points. As new data points are added, the surrogate function
evolves until it converges in the final plot on the lower right. The maximum cost function
reduction obtained is 27% using 12 function evaluations. The corresponding optimal airfoil
shape is shown in Figure 4 together with the initial shape. We observe that the shape
deformation is in the inward normal direction, and we point out that any additional inward
deformation results in flow separation. Results using third and fourth order polynomial
surrogate functions are given in Table 1, and these cases both produced a smaller reduction in
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Table 1. Summary of results for several surrogate function choices with a single shape parameter. Cost function
reduction and number of function evaluations needed for convergence are compared for all cases.

Surrogate Opt. method Parameters % J reduction Evaluations

3rd order polynomial Strawman 1 19 4

4th order polynomial Strawman 1 26 8

Cubic spline Strawman 1 27 12

Figure 4. Initial (thin line) and final (thick line) airfoil shapes using one parameter with spline as surrogate
function.

cost function and qualitatively similar airfoil shapes. Because the surrogate spline fits exactly
through the data points, it captures more detail in the function than either polynomial case.

Using only one parameter, we have demonstrated that a simple surrogate based opti-
mization method produces a significant cost function reduction with a modest number of
function evaluations. While this method is extremely easy to implement, and may produce
a significant cost function reduction, it has several disadvantages. First, the ‘strawman’ ap-
proach is not strictly guaranteed to converge to a local minimum of the function. This can be
easily illustrated by considering the following counter example. Suppose that the initial data
set consists of three points, where two points are symmetric around the center point. Using
a parabolic surrogate function, the initial fit will be a symmetric parabola with its minimum
point at the center data point. The ‘strawman’ approach will immediately converge to the
location of the center point, which is a minimizer of the surrogate, but not necessarily a
minimizer of the true function. Another disadvantage of the strawman method is that the
algorithm may take very small steps towards the minimum. We will see in the next section
that this tendency may be avoided by restricting the algorithm to generate points on a mesh.

4. Outline of the surrogate management framework

In this section, we outline the steps used for trailing-edge shape optimization with the sur-
rogate management framework (SMF). The surrogate management framework, introduced
in Booker et al. (1999), is a pattern search method which incorporates surrogate functions
to make the optimization cost effective. The main idea behind the SMF method is to use a
surrogate function as a predictive tool, while retaining the robust convergence properties of
pattern search methods. Like pattern search methods, SMF is a mesh based algorithm, so
that all points evaluated are restricted to lie on a mesh. The method is applied to trailing-edge
shape optimization with two and five parameters in Sections 5 and 7, respectively.

The first step in the optimization is to choose a set of initial data. Latin hypercube sampling
(LHS), introduced by McKay et al. (1979), is commonly used to find a well distributed set of
initial data in the parameter space, thus ensuring that each input variable has all portions of its
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range represented in the chosen data set. To choose a sample set of m vectors in the parameter
space, each dimension is divided into m subintervals, and a point within each subinterval
is selected (this is often done by randomly sampling from a uniform distribution over the
subinterval). The sample set is then obtained by randomly grouping these points to form
vectors. Consequently, for each dimension, each interval appears exactly once in the set.

Once the initial data set, {x1, . . . , xm}, has been chosen, the cost function J (x) is evaluated
at these points, and an initial surrogate function is constructed. The surrogate interpolates
the data using Kriging (to be discussed in Section 4.1), and then it can be used to predict
the value of the function at a particular location in the parameter space. As the optimization
progresses, the surrogate should be updated to include new data. After constructing an
initial surrogate, all points subsequently evaluated by the algorithm are restricted to lie on
a mesh in the parameter space. The mesh definition is flexible so long as it is defined by a
set of vectors that positively span R

n (Lewis and Torczon, 1996). A positive spanning set
of a matrix is simply the set of positive linear combinations of its column vectors. If none
of the vectors in a given set can be formed from a non-negative combination of the others,
the set is considered positively independent (Davis, 1954). A positive basis is then defined
as a positively independent set whose positive span is R

n . If we let D be a matrix whose
columns form a positive spanning set in R

n , then the set of mesh points surrounding a point
x are given by

M(x, �) = {x + �Dz : z ∈ N
nD }, (3)

where � is the mesh size parameter, and nD is the number of columns in D. The mesh
may be refined or coarsened by changing � > 0, and the mesh may be rotated from one
iteration to the next as long as it satisfies this definition. Additional technical restrictions
are discussed in Torczon (1997).

The SMF algorithm consists of two steps, SEARCH and POLL. The exploratory SEARCH
step uses the surrogate to aid in the selection of points which are likely to improve the
cost function. The SEARCH step provides means for local and global exploration of the
parameter space, but is not strictly required for convergence. Because the SEARCH step is
not integral to convergence, it affords the user a great deal of flexibility and may be adapted
by a knowledgeable user to a particular engineering problem.

Convergence of the SMF algorithm is guaranteed by the POLL step, in which points
neighboring the current best point on the mesh are evaluated in a positive spanning set
of directions to check whether the current best point is a mesh local optimizer. A set of
n + 1 POLL points are required to generate an positive basis. An example of such a basis
is constructed in R

n as follows. We let V be the matrix whose columns are the basis
elements. Then construct D = [V, −V · e] , where e is the vector of ones and −V · e is
the negative sum of the columns of V . The columns of D form a positive basis for R

n

using n + 1 vectors. For example, in three dimensions such a basis could be given by
(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, −1, −1).

Following evaluation of the initial data, the first step in the optimization is a SEARCH
step. In the SEARCH step, optimization is performed on the surrogate in order to predict the
location of one or more minimizing points, and the function is evaluated at these points. If
an improved cost function value is found, the search is considered successful, the surrogate
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is updated, and another search step is performed. If the SEARCH fails to find an improved
point, then it is considered unsuccessful and a POLL step is performed, in which the set of
POLL points are evaluated. It should be noted that as soon as an improved point is found, it
is no longer necessary to evaluate the remainder of the set of POLL points, thereby reducing
the number of required function evaluations. If the POLL produces an improved point, then
a SEARCH step is performed on the current mesh. Otherwise, if no improved points are
found, then the current best point is defined to be a mesh local optimizer as in Audet and
Dennis (2003). This terminology is to acknowledge that it may not be a local minimizer of
the objective function on the mesh since the POLL set is typically a subset of all the points
in the mesh adjacent to the POLL center. For greater accuracy, the mesh may be refined, at
which point the algorithm continues with a SEARCH. Convergence is reached when a local
minimizer on the mesh is found, and the mesh has been refined to the desired accuracy. Each
time new data points are found in a SEARCH or POLL step, the data is added to the surrogate
and it is updated. The steps in the algorithm are summarized below, where the set of points
in the initial mesh is M0, the mesh at iteration k is Mk , and the current best point is xk .

1. SEARCH

(a) Identify a finite set Tk of trial points on the mesh Mk .
(b) Evaluate J (z) for all trial points z ∈ Tk ⊂ Mk .
(c) If for any trial point in Tk , J (z) < J (xk), a lower cost function value has been found,

and the SEARCH is successful. Increment k and go back to (a).
(d) Else, if no trial point in Tk improves the cost function, SEARCH is unsuccessful.

Increment k and go to POLL.

2. POLL

(a) Choose a set of positive spanning directions, and form the poll set Xk as the set of
mesh points adjacent to xk in these directions.

(b) If J (xpoll) < J (xk) for any point xpoll ∈ Xk , then a lower cost function has been found
and the POLL is successful. Increment k and go to SEARCH.

(c) Else, if no point in Xk improves the cost function, POLL is unsuccessful.

i. If convergence criteria are satisfied, a converged solution has been found. STOP.
ii. Else if convergence criteria are not met, refine mesh. Increment k and go to

SEARCH.

Because the method has distinct SEARCH and POLL steps, convergence theory for the SMF
method reduces to convergence of pattern search methods. Convergence of the SMF method
is discussed at length by Booker et al. (1999) and by Serafini (1998). Pattern search con-
vergence theory is presented by Audet and Dennis (2003), Torczon (1997) and Lewis and
Torczon (1999, 2000, 2002).

4.1. Construction of surrogates using Kriging

One of the important features of SMF is the use of a surrogate to predict the minimum of the
cost function. In this section, we derive an expression for a general Kriging approximation,
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following Lophaven et al. (2002) and Sacks et al. (1989). Kriging, also called DACE
(design and analysis of computer experiments), is a statistical method originating from
the field of geostatistics, which is based on the use of spatial correlation functions. It is
easily extended to multiple dimensions, making it attractive for optimization problems with
several parameters. In this work, the MATLAB DACE package described in Lophaven
et al. (2002) was incorporated for surrogate function building.

We wish to approximate the function value at an unknown location x ∈ R
n based on

a set of known data points. We start with m known data points {si } ⊂ R
n and define

ys ∈ R
m to be the column vector whose elements are the corresponding function values;

i.e. [ys]i = {y(si )}, i = 1, 2, . . . , m. We wish to predict the value of the function based on
the values of known points, so we consider the linear predictor

ŷ(x) = c(x)T ys, (4)

where c(x) ∈ R
m (hereafter referred to as c for simplicity) is a vector of weights applied to

the known functions values ys . By determining the vector c, we will find an approximation
of the function at any location x , given a set of known data points. We may assume that
the deterministic function ŷ(x) can be modeled as the realization of a stochastic process
Y (x), which is the sum of a regression model having basis functions f j : R → R and
coefficients β j , j = 1, 2, . . . , k, and a random function Z : R

n → R, giving Y (x) =∑k
j=1 β j f j (x) + Z (x), or

Y (x) = βT f (x) + Z (x), (5)

where β = (β1, β2, . . . , βk)T and f (x) = ( f1(x), f2(x), . . . , fk(x))T . For any point x ∈ R
n ,

the random process Z (x) is assumed to have zero mean, variance σ 2, and correlation R(w, x)
between x and any other point w.

The best choice of Kriging weights will be determined by minimizing the mean squared
error (MSE) of the predictor, which is the error between the predicted value and the actual
value at location x ; namely,

MSE[ŷ(x)] = E[cT Ys − Y (x)]2, (6)

where Ys ∈ R
m is the vector defined by [Ys]i = Y (si ), i = 1, 2, . . . , m. Letting F =

[ f (s1), . . . , f (sm)] ∈ R
k×m and Z = [z1, . . . , zm] we have

cT Ys − Y (x) = cT Z − z + (F T c − f (x))T β, (7)

where z is a realization of Z (x), and z1, . . . , zm are realizations of Z (si ), i = 1, 2, . . . , m.
We impose an unbiasedness constraint (ensuring that the components of c sum to one)

F T c − f (x) = 0, (8)

so that (7) becomes

cT Ys − Y (x) = cT Z − z. (9)
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Now, the MSE is

MSE[ŷ(x)] = E[z2 + cT Z Z T c − 2cT Zz]. (10)

From the covariance of Z , we have E[z2] = σ 2, E[Zz] = σ 2r and E[Z Z T ] = σ 2 R, where
r ∈ R

m is a vector of correlations between the known points and an untried point x , and
R ∈ R

m×m is the matrix of correlations between the known points. With this, the MSE
becomes

MSE[ŷ(x)] = σ 2(1 + cT Rc − 2cT r ). (11)

We wish to find the weights, c, which minimize the MSE subject to the constraint (8). To
do this, we use the method of Lagrange multipliers with the Lagrangian function

L(c, λ) = σ 2(1 + cT Rc − 2cT r ) − λT (F T c − f ), (12)

where λ is the Lagrange multiplier. Taking the gradient of the Lagrangian and setting it to
zero, we obtain

Rc + F λ̃ = r
(13)

F T c = f,

where λ̃ = −λ/2σ 2. Solving this system and substituting into the predictor, we have

ŷ(x) = f (x)T β∗ + r (x)T γ ∗, (14)

where we have defined

β∗ = (F T R−1 F)−1 F T R−1Ys

γ ∗ = R−1(Y − Fβ∗).

For a given set of data and choice of regression and correlation functions, β∗ and γ ∗ are
fixed and need not be recomputed for each new point x .

To complete our description of Kriging surrogates we must choose a regression model and
a correlation function. The most common choice of regression model is simply f (x) = 1
so that the Kriging predictor becomes

ŷ(x) = β∗ + r (x)T R−1(Ys − 1 · β∗)
(15)

β∗ =
∑

j Y (s j )
∑

i R−1
i, j∑

i, j R−1
i, j
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The correlation function is chosen as the product of stationary one dimensional correla-
tions, making the surrogate easily extendable to multiple dimensions. A common choice of
correlation function is to express the correlation between two points x and w in terms of a
Gaussian process

R(θ, w, x) =
n∏

j=1

exp(−θ j (w j − x j )
2). (16)

The Kriging surrogate in (15) is completed with the matrix of correlations between the
values of z at any two known design sites, which is defined by

Ri j = R(θ, si , s j ), i, j = 1, 2, . . . , m,

and the vector of correlations between the value of z at a known design site and any point x

r (x) = [R(θ, s1, x), . . . ,R(θ, sm, x)].

The optimal value θ∗ of θ is found using maximum likelihood estimation in each dimension,
so that θ∗ solves

min
θ

{
ψ(θ ) ≡ |R| 1

m σ̂ 2
}
, (17)

where |R| is the determinant of R, and

σ̂ 2 = 1

m
(ys − Fβ∗)T R−1(ys − Fβ∗).

5. Unconstrained two parameter results

In Section 3, significant cost function reduction was demonstrated using the ‘strawman’
approach with one shape parameter. In this section, the full SMF method is validated using
two shape parameters in several cases, all of which give significant improvements over
the one parameter case. The placement of the airfoil surface control points for the two
parameters, a and b, is shown in Figure 5. For each set of parameters, the airfoil surface is
interpolated using a Hermite spline. The bounds on the parameters are chosen to correspond
to a straight line connecting the left edge of the deformation region and the trailing edge.

Figure 5. Placement of control points for optimization with two parameters.
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Table 2. Two parameter ‘strawman’ method cases.

Surrogate Opt. method Init. data Parameters % J reduction Evaluations Iterations

Spline Strawman 6 rand 2 29 17 11

Spline Strawman 5 star 2 52 24 19

Kriging Strawman 7 LHS 2 54 18 11

To give a basis for comparison, results for three cases using the ‘strawman’ method
(no POLL step) with two shape parameters are presented in Table 2. The first case uses
a biharmonic spline surrogate function with a random set of initial data, the second case
uses a biharmonic spline with a star shaped initial data pattern, and the third case uses a
Kriging surrogate with initial data from Latin hypercube sampling. While it is impossible
to conclude anything from a single statistical sample, comparison of these results suggests
that choosing a well-distributed data set, such as LHS, can make a difference in the results.
The results also suggest that the influence of the surrogate function can be substantial. The
third case in Table 2, using Kriging and LHS, produced the most significant cost function
reduction of 54% after 18 function evaluations. The optimal shape obtained in this case is
shown on the left of Figure 6. The corresponding normalized cost function reduction is given
on the right of Figure 6, and the initial and final Kriging surrogates are shown in Figure 7. To
make the ‘strawman’ case consistent with cases using the SMF method, all points evaluated
were restricted to lie on a mesh of the same size. Convergence for the ‘strawman’ was
reached when surrogate minimum point was the same as the previous iteration.

For purpose of comparison, all cases using the full SMF method use the same set of
LHS initial data as the ‘strawman’ case shown on the left side of Figure 7. All tables in
this section list the total number of function evaluations as well as the number of iterations,
where one iteration is a complete SEARCH or POLL step. In all cases, the number of function
evaluations includes the number of initial data points. The number of iterations includes all

Figure 6. Left: initial (thin line) and final (thick line) airfoil shapes using two parameters with no poll step,
Kriging and LHS. Right: normalized cost function (acoustic power) vs. total function evaluations.
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Figure 7. Initial and final Kriging surrogate functions for “strawman” case. Left plot shows initial data obtained
with Latin hypercube sampling; right side shows final surrogate fit.

SEARCH and POLL steps, but not evaluation of the initial data set. Each table gives converged
results on three subsequently finer meshes.

The full SMF method is implemented with the POLL step for two parameters, and results
are given in Table 3. In this case, one point, the surrogate minimizer rounded to the mesh,
is evaluated in each SEARCH step. Even on the original mesh, a 69% cost function reduction
has been obtained compared with 54% in the ‘strawman’ method. One mesh refinement
gives a slight improvement (72% total reduction), while the second refinement has no effect
on the cost function. Comparing with the ‘strawman’ case, the number of required iterations
has increased from 11 to 15 for convergence with two mesh refinements using equivalent
meshes. Although the POLL step adds some computational expense, we have demonstrated
that it can also result in a significantly lower cost function value. As discussed in Section 4,
the POLL step ensures a convergent subsequence of mesh local optimizers in the parameter
space.

Tables 4 and 5 explore the effect of using multiple points in the SEARCH step of the
algorithm. In each case, one SEARCH point is found by a direct search for the minimum of
the surrogate function on the mesh. It is well known that the ‘pile-up’ of points in Kriging
functions can lead to degradation of the surrogate accuracy (Audet et al., 2000). Because of
this, additional search points may be chosen by searching the mesh for areas in which there
is not much data. These ‘space-filling’ points are added in an effort to keep the data set well
distributed and prevent degradation of surrogate accuracy. The addition of ‘space-filling’

Table 3. Two parameter SMF—one search point from surrogate.

Surrogate Refinement Init. data Parameters % J reduction Evaluations Iterations

Kriging 0 7 LHS 2 69 21 9

Kriging 1 7 LHS 2 72 29 13

Kriging 2 7 LHS 2 72 33 15



250 MARSDEN ET AL.

Table 4. Two parameter SMF—two search points (one from surrogate, one space filling).

Surrogate Refinement Init. data Parameters % J reduction Evaluations Iterations

Kriging 0 7 LHS 2 69 27 9

Kriging 1 7 LHS 2 72 37 13

Kriging 2 7 LHS 2 72 42 15

Table 5. Two parameter SMF—three search points (one from surrogate, two space filling).

Surrogate Refinement Init. data Parameters % J reduction Evaluations Iterations

Kriging 0 7 LHS 2 71 25 6

Kriging 1 7 LHS 2 77 33 9

Kriging 2 7 LHS 2 77 46 13

points does not necessarily increase the overall wall-clock time since the SEARCH points may
be evaluated in parallel. Results using two points in each SEARCH step are given in Table 4.
In this case the SEARCH points are the surrogate minimizer and one additional ‘space-filling’
point. The cost function reduction and the optimal shape are identical to the case with only
one search point. Using one and two search points, 13 iterations were required to acheive
the maximum cost function reduction, which is a slight increase over the 11 required in the
‘strawman’ case.

Using three SEARCH points (one surrogate minimizer and two ‘space-filling’ points) a
larger cost function reduction of 77% was achieved. Results for this case are given in Table 5
for the original mesh and two mesh refinements. Figure 8 shows the optimized airfoil shape
(left) and the cost function reduction (right) for this case. Comparing with the results in
Tables 3 and 4, the case with three search points used fewer iterations. This savings is

Figure 8. Left: initial (thin line) and final (thick line) airfoil shapes using two parameters with SMF method.
Right: normalized cost function (acoustic power) vs. total function evaluations. Each SEARCH step used three
function evaluations.
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explained by a higher surrogate quality in the final iterations, resulting in fewer polling
steps. A comparison of surrogate quality is made by evaluating the mean squared error
predicted by the surrogate.

The two-parameter results show a dramatic improvement in cost function reduction com-
pared with one-parameter results. We have also shown that efforts to reduce surrogate degre-
dation can pay off, resulting in a lower cost function solution. In addition, the two parameter
cases, shown in Figures 6 and 8, resulted in airfoil shapes with a blunt trailing-edge, which
was at first sight counter-intuitive. The magnitude of acoustic power has decreased signifi-
cantly for the optimized shapes compared to the original. However, with the 77% acoustic
power reduction in the best two parameter case, the optimized airfoil has 20% lower lift
than the original, which is often not acceptable in engineering practice. This emphasizes
the need for addition of constraints on lift and drag, which is addressed in Section 6.

To further quantify the contribution of the surrogate in the best two-parameter case, we
note that 88% of the total cost function reduction for this case was the result of surrogate
based SEARCH points. The POLL steps accounted for the remaining 12% of the cost function
reduction. There were a total of 8 SEARCH steps, three of which were successful, and a
total of 5 POLL steps, two of which were successful. Based on this data, we can make a
rough extrapolation to a case without surrogates, using POLL steps alone. Given that the
8 SEARCH steps averaged 11% of the total reduction per iteration, and the 5 POLL steps
averaged 2.4% reduction per iteration, it is estimated that an algorithm based on POLL steps
alone would require at least 42 iterations to achieve an equivalent cost function reduction.
Although this is a simplistic estimate, it suggests that a direct search algorithm without
surrogates would result in a significant computational cost increase over the 13 iterations
used by the surrogate-based SMF method. We also note that all of the successful searches
were due to surrogate minimum points, and not due to space filling points, suggesting
that the surrogate-based searches are much more effective than purely random searches. It
is likely that the surrogate does not always accurately capture the global behavior of the
true function. However, the success of the surrogate-based searches suggests that the it is
crucial to efficiency of the method for this problem. It is important to emphasize that the
surrogate accuracy is in no way related to the convergence theory of the algorithm, but that
the surrogate simply acts as a guide for the selection of search points.

6. Constrained optimization using filters

To make the trailing-edge design problem more realistic, constraints are added to keep lift
and drag at desirable levels. The loss of lift observed in the two parameter cases in Section 5
underscores this need. Constraints are enforced by using a filter, as added to pattern search
methods by Audet and Dennis (2000). The use of filters for constrained optimization was
originally introduced by Fletcher and Leyffer (2002). We consider the general constrained
optimization problem

minimize J (x),
(18)

subject to x ∈ �, C(x) ≤ 0.
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In the above problem statement, J : R
n → R is the cost function, and x is the vector

of parameters. The constraints are given by m functions ci : R
n → R, i = 1, 2, . . . , m

such that C(x) = (c1(x), . . . , cm(x))T . The bounds on the parameter space are defined by a
polyhedron in R

n denoted by �.
We begin by defining a non-negative constraint violation function H : R

n → R
+, which

is a weighted norm of the constraint violations. The value of H indicates how closely the
problem constraints are being met. With multiple constraints, H may be the sum of several
constraint functions, with weights chosen according to relative importance. The goal of the
optimization problem is to find solutions which have a small cost function value, together
with a small (or zero) value of H .

The feasible region is defined as the set of points that exactly satisfy H (x) = 0. Thus, a
point x is infeasible if H (x) > 0. An infeasible point x ′ is considered filtered, or dominated,
if there is an infeasible point x belonging to the filter for which H (x) ≤ H (x ′) and J (x) ≤
J (x ′). A filter,F , is defined here to be the finite set of non-dominated infeasible points found
so far. An example of a typical filter is shown in Figure 9, where the cost function value
(J ) is plotted versus the constraint violation (H ). The points in the filter are connected with
vertical and horizontal lines to form a dividing line between filtered and unfiltered regions.
The best feasible point, marked with a square, is the point with the lowest cost function
value, which satisfies the constraints (i.e., where H = 0). The least infeasible point, marked
with a triangle, is the filter point with the lowest non-zero constraint violation function value.
Other points in the filter are marked with circles.

The steps in the filter optimization algorithm fit within the framework of the SMF
method, and the basic structure is the same as presented in Section 4. The differences
in implementation between unconstrained SMF and the filter method lie in the criteria
which make SEARCH and POLL steps successful or unsuccessful. In the filter method, a
SEARCH or POLL step is formally considered successful if it improves the filter, which

Figure 9. Example of filter for constrained optimization problem shown on plot of J vs. H . The best feasible
point is the square, the least infeasible point is the triangle, the filter points are the circles, and dominated points
are stars.
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means that a new non-dominated point was identified. For example, referring to
Figure 9, a point with values J = 0.2, H = 0.5 would improve the filter. Like the SMF
method, the algorithm consists of SEARCH and POLL steps as follows. Convergence the-
ory of this method is also based on pattern search theory, and is discussed at length in
Audet and Dennis (2000). The set of points in the initial mesh is M0, the mesh at itera-
tion k is Mk , the current least infeasible point is L Fk and the current best feasible point
is BFk .

1. SEARCH

(a) Identify finite set Tk of trial points on the mesh Mk .
(b) Evaluate J (z) for all trial points z ∈ Tk ⊂ Mk .

(c) If any point in Tk , is an unfiltered point, the SEARCH is successful. Increment k and
go back to (a).

(d) Else, if no trial point in Tk is an unfiltered point, the SEARCH is unsuccessful. Incre-
ment k and go to POLL.

2. POLL

(a) Choose a set of positive spanning directions, and form the poll set Xk as the set of
mesh points adjacent to either L Fk or B Fk in these directions.

(b) If any point in Xk is an unfiltered point, the POLL is successful. Increment k and go
to SEARCH.

(c) Else, if no point in Xk is an unfiltered point, the POLL is unsuccessful.

i. If convergence criteria are satisfied, an approximate solution has been found.
STOP.

ii. Else, if convergence criteria are not met, refine mesh. Increment k and go to
SEARCH.

Formally, it is allowable to enforce a stricter criterion for the success of the POLL step.
In the constrained trailing-edge optimization in Section 7, we require improvement of
either the best feasible point or the least infeasible point for success of the POLL step. The
algorithm is then restricted to explore areas of known interest, reducing the number of
required POLL steps. This approach is used in the constrained trailing-edge optimization
because the problem requires particularly expensive function evaluations. For problems in
which cost is less critical, it may be beneficial to keep the less restrictive definition to afford
more exploration of the design space. As stated in step 2(a), it is allowable to poll around
either the best feasible point or the least infeasible point or both. In the current problem,
POLL steps alternated between the best feasible point and the least infeasible point. This can
be decided according to the users discretion as long as one performs a thorough exploration
of the design space.

In the trailing-edge problem, we have chosen to include the best feasible point in the filter
so that any infeasible point with a higher cost function value than the best feasible point
will be filtered. This is an allowable choice made solely due to the significant expense of
the function evaluations. In general, it may be beneficial to keep the less restrictive filter
definition because a relaxation of the constraint can lead to more thorough exploration of
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the design space. Technical reasons for not including the feasible points in the filter (i.e.,
tracking them separately) have been presented by Fletcher and Leyffer (2002).

6.1. Incorporation of a penalty function

Many optimization methods rely on the use of a penalty function to enforce constraints.
Penalty functions are used to artificially increase the cost function value when constraints
have been violated, thus steering the optimizer to areas which satisfy the constraint. They are
attractive due to ease of implementation into existing optimization frameworks. Challenges
usually involve the choice of arbitrary weighting of the constraint function relative to the cost
function. Penalty functions can be easily incorporated into the SMF filter method, and can
be extremely useful in aiding the selection of SEARCH points. Here, we present a systematic
approach for choosing the penalty constant by making use of the filter framework.

For the trailing-edge problem, the penalty function

Ĵ = Jorig + αH (19)

is formed, and a surrogate is constructed to approximate the function Ĵ , so that it is used
to predict areas of the function which satisfy the constraint. The minimum of the modified
surrogate function can then be evaluated in the SEARCH step.

The parameter α is chosen based on the current set of filter points (including the best
feasible point). We wish to choose α so as to bias the surrogate towards points with low
values of H , which will improve the filter. Let us first consider a filter with two points, a
and b, for which H (a) < H (b) and J (a) > J (b). We wish to choose α so that point a is
favored by the surrogate because it has a smaller constraint violation. We therefore require

J (a) + αH (a) < J (b) + αH (b)

and we see that for this pair of points α must be at least as large as the negative of the slope
of the line connecting them. When considering the set of points making up a filter, α should
therefore be at least as large as the negative slope of the steepest line connecting any two
points in the filter. This choice guarantees domination of the point with the smallest value
of H in the filter. Since the filtered points are not of interest in the optimization, they need
not be considered in the choice of α. If there are less than two points in the filter set, α = 0.

As points are evaluated in the optimization, the filter evolves and the value of α is updated
in each iteration. Values of J and H for all data points should be saved so that previous data
points may be updated in the surrogate as the value of α changes.

7. Results of constrained optimization

In this section, the SMF method is applied for shape optimization using five design pa-
rameters. An increase in the number of parameters gives greater flexibility in the airfoil
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Figure 10. Placement of control points for optimization with five parameters.

geometry and will also demonstrate feasibility and cost of the SMF method for more realis-
tic applications. Increasing the number of parameters also presents challenges for searching
on the surrogate, and these are addressed in this section. Constraints are applied to keep lift
and drag at desirable levels using the filter methods discussed in Section 6, and results are
compared to the equivalent unconstrained case. Figure 10 shows the placement of the five
control points on the upper surface of the airfoil.

7.1. Shape parameterization with thickness constraint

In order to enforce a thickness constraint in the case of multiple parameters, strict bounds
must be defined for the allowable shape deformation. As in the two parameter case, the
airfoil surface is defined by interpolation between the control points using a Hermite spline,
and displacement of the airfoil surface must be normal to the surface of the original airfoil.
However, in this case, we take care to enforce strict bounds on all points on the airfoil
surface, not just at the control points.

The bounds on the surface deformation region are based on pre-defined minimum and
maximum thickness functions. Displacement of all points relative to the original airfoil
surface is normalized by the maximum allowable distance in the inward and outward normal
directions. All parameters ai have values such that −1 ≤ ai ≤ 1 , where ai = 0 corresponds
to the original airfoil shape, ai = −1 corresponds to the maximum inward displacement,
and ai = 1 corresponds to the maximum outward displacement. Use of a Hermite cubic
spline as the interpolating function guarantees that values of all interpolated points are
bounded by the minimum and maximum values of the known data points. This definition
guarantees that no point on the surface will be displaced more than the maximum allowable
displacement distance.

To define the minimum bound, a straight line is drawn from the left side of the upper
surface deformation region to the trailing-edge point. This line is used to define the minimum
allowable airfoil thickness at all points on the surface. Because displacement of all points
in normalized by the maximum, this line defines a maximum inward normal displacement
for all surface points. The maximum airfoil thickness is defined by an equal displacement
from the surface in the outward normal direction. This method can be easily generalized
for any prescribed function which defines the thickness constraint.

7.2. Selection of SEARCH points

Using a surrogate in multiple dimensions requires use of an optimization method to search
for the surrogate minimizer. With two shape parameters in Section 5, the surrogate min-
imizer was found using a direct search on the mesh. To search the surrogate in the five
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parameter cases, a standard covariance matrix adaptation evolutionary strategy (CMA-ES)
is employed. Evolutionary algorithms (EA’s) usually provide a fast initial function descent,
and they allow for thorough global search in the parameter space. The undesirable aspects
of EA’s are usually the computational expense, which can be thousands of function evalua-
tions, and the general lack of formal convergence theory. In this case, a surrogate minimum
is not required since the purpose of the surrogate is to find promising areas of the function for
the SEARCH step. Since each surrogate function evaluation is essentially cost-free compared
to that of the true function, computational expense of the surrogate is not an issue in this
application. The covariance matrix adaptation enables the evolution strategy to efficiently
minimize even badly scaled and non-separable problems through adaptation of strategy pa-
rameters. Further details of the CMA-ES may be found in Hansen et al. (2003) and Hansen
and Ostermeier (1996). Accuracy is increased by running the CMA-ES optimization several
times and taking the minimum value.

Based on experience with two parameters, three points are chosen in each SEARCH step
for the five-parameter cases. They are chosen to meet the following goals:

1. global search
2. local search around current best point
3. surrogate improvement.

The first point is chosen using the surrogate function as a predictor. In the constrained
case, the surrogate is modified with a penalty function as in Eq. (19). The minimum of the
surrogate is found using the CMA-ES. The nearest mesh point to this minimizing point is
evaluated in the SEARCH.

The second SEARCH point takes advantage of the surrogate to do a local search around
the current best point. In order to pre-empt the need for a POLL step, the surrogate is
used to predict the values of the POLL points neighboring the current best point. In the
constrained case, the current best point may be either the best feasible point or the least
infeasible point. The POLL point with the smallest surrogate value is then evaluated. In
the event that the SEARCH step fails, one of the POLL points has already been evaluated.
This step guarantees that the cost of any POLL step will be N evaluations, rather than
N + 1.

The third point is for both surrogate improvement and global search. Since a direct search
for space-filling points on a five-dimensional mesh is impractical, the mean squared error
is used to identify areas for surrogate improvement. The CMA-ES is used to search the
Kriging surrogate for the point of maximum mean squared error (MSE), and the nearest
mesh point is used in the SEARCH. This is done in an attempt to find areas with the fewest
data points, as well as mitigate surrogate degradation.

7.3. Comparison of constrained and unconstrained results

Unconstrained results using five shape parameters are shown in Table 6. The first line in the
table gives results for convergence on the original mesh, and the second line gives the con-
verged solution after one mesh refinement. Based on results from the two parameter cases,
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Table 6. Five parameter cases with SMF method, unconstrained.

Params Refinement % J reduction % change lift % change drag Evaluations Iterations

5 0 65 −20 −12 58 13

5 1 77 −17 −12 88 22

additional mesh refinements were not performed. The number of evaluations in the table
includes the initial data set of 15 points, found with Latin hypercube sampling. The number
of iterations includes all search and poll steps following evaluations of initial data set. The
converged airfoil shape for the unconstrained case is shown on the left side of Figure 11,
and the cost function reduction for this case is shown on the right. The blunt trailing-edge
shape is qualitatively similar to the shapes obtained with the two parameter optimization,
confirming robustness of the SMF method. The maximum cost function reduction for this
case is 77% using 22 iterations after one mesh refinement, which agrees with the two pa-
rameter results. As in the two parameter case, the blunt trailing-edge results in a significant
(nearly 20%) loss in lift. The loss of lift is not surprising, since the optimized shape is
more symmetric than the original shape. We observe that the blunt trailing-edge reduces
the surface area affected by the separation region at the trailing-edge. It is hypothesized that
pressure fluctuations are reduced in this region due to the smaller separation area. This in
turn results in less vorticity generation, and a smaller vorticity magnitude in the wake.

We can now examine the effect of the surrogate and the three types of SEARCH points
used in the five parameter unconstrained case. There were 12 successful and 5 unsuccessful
SEARCH steps, for a total of 17, and three successful and two unsuccessful POLL steps,
totaling 5. Of the total cost function reduction in this case, 70% was the result of SEARCH
steps and 30% was the result of POLL steps. Although the relative contribution of the
surrogate has decreased slightly compared with the two parameter case, it continues to play
a crucial role in the optimization. It is also useful to look at the effectiveness of the three

Figure 11. Left: initial (thin line) and final (thick line) airfoil shape with 5 shape parameters, unconstrained case.
Right: corresponding normalized cost function reduction vs. number of function evaluations.
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Table 7. Five parameter cases with SMF method, penalty constraints on lift and drag.

Params Refinement % J reduction % change lift % change drag Evaluations Iterations

5 0 42 +0.1 −9 74 17

5 1 43 +0.2 −9 92 22

types of SEARCH points used in finding improved points. The surrogate minimum points
(type 1) contributed 45% of the cost function reduction resulting from SEARCH steps, and
the local surrogate-based SEARCH points (type 2) contributed the remaining 55%. Based
on these results, we claim that the surrogate is an effective guide for selecting both global
and local SEARCH points. Additionally, the data suggests that use of a surrogate results in
a substantial cost savings in the SMF algorithm compared with a method based purely on
POLL steps.

Results for the constrained case are presented in Table 7. The surrogate for this case is
constructed as the sum of the constraint violations, in order to keep lift and drag at desirable
levels. Since this choice of constraint violation function is based on the L1-norm, it is
consistent with the exactness property, which states that there exists an α sufficiently large
such that the solution to min(J ) is also a solution to min ( Ĵ ) (Nocedal and Wright, 1999).
The following constraint violation function is used in the trailing-edge optimization,

H = max

(
0,

L∗ − L

L∗

)
+ max

(
0,

D − D∗

D∗

)
, (20)

where L∗ and D∗ are the original airfoil lift and drag. The surrogate is constructed us-
ing Eq. (19), so that a penalty is added if the surrogate predicts that either the lift de-
creases or the drag increases. In this way, we allow the lift to increase and/or the drag to
decrease.

The optimized airfoil shape for the constrained case is shown on the left side of Figure 12.
The constraints are effective in keeping the lift at the target value, and the drag for this
case has fortuitously decreased by 9%. The cost function reduction for this case is 43%,
requiring 22 iterations for convergence on a once-refined mesh. The bump near the trailing-
edge reduces the magnitude of the unsteady vortex shedding by reducing the size of the
separation region. However, when compared to the unconstrained case, the bump size
has been compromised to maintain lift, and the trailing-edge shape is closer to a cusp.
Comparison of the shapes for the constrained and unconstrained cases also illustrates the
sensitivity of the flow to very small changes in the shape of the airfoil.

The final filter is shown in Figure 13. The left side shows the entire filter domain, and
the right side shows a magnified view of the filter region. The filter shows the tradeoff
between cost function reduction and constraint violation. The cluster of points around the
filter, and on the H = 0 axis verifies that the algorithm is expending most of its effort in
the most promising areas of the parameter space. For comparison, the rightmost filter point
corresponds to a shape with a 64% cost function reduction and a 13% loss in lift. The other
filter points show the range of possible airfoil designs evaluated between this point and the
optimal point.
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Figure 12. Left: initial (thin line) and final (thick line) airfoil shape with 5 shape parameters, and constraints on
lift and drag. Right: corresponding normalized cost function reduction vs. number of function evaluations.

Figure 13. Final filter for constrained 5 parameter optimization problem. Cost function J vs. constraint violation
function H . The best feasible point is the square, the least infeasible point is the triangle, the filter points are the
circles, and filtered points are stars. The original airfoil cost function is marked with a diamond. Right figure is
close-up of filter region in left figure.

In the five parameter constrained case, the surrogate continues to play a key role in the
optimization. In this case, there were a total of 8 successful, and 7 unsuccessful SEARCH
steps, and a total of 5 successful and 2 unsuccessful POLL steps. The SEARCH steps resulted
in 58% of the total reduction of the cost function value of the best feasible point, and POLL
steps resulted in 42% of the total reduction. The effect of the surrogate has been somewhat
reduced compared with the 5 parameter unconstrained case. However, some reduction in
surrogate effectiveness is expected with the addition of constraints due to the modification
of the surrogate with the penalty function. Despite this, the surrogate is responsible for the
majority of the cost function reduction, and once again is likely to be responsible for a large
savings in computational cost.
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8. Discussion

Application of the SMF method to trailing-edge optimization has resulted in significant
reduction in acoustic power in all cases, as well as several interesting and previously un-
expected airfoil shapes. The SMF method is robust and cost effective for several design
parameters with and without constraints. The SMF filter method has been applied to en-
force constraints on airfoil lift and drag. Surrogate building incorporated the use of a penalty
function, with a systematic method for choosing the penalty parameter. We reiterate that
the penalty function was only used to aid in the selection of the SEARCH points, and is in no
way required for enforcement of constraints with the filter method. Comparison between
the constrained and unconstrained cases using five parameters clearly showed a trade-off
between noise reduction and loss of lift.

Theoretical analysis of trailing-edge noise for the Blake airfoil geometry in turbulent
flow is presented by Howe (1988). Results from this work show that the lift dipole is
much more significant in contributing to the noise spectra than the thickness (drag) dipole,
which was confirmed by our simulations. Although Howe’s work is an analysis of turbulent
trailing-edge flow, it is worth noting that his analysis predicted a decrease in trailing-edge
noise with an increase in trailing-edge angle. This result agrees qualitatively with the blunt
shapes found by the optimization method in the two and five parameter cases, both of which
resulted in a dramatic reduction in trailing-edge noise.

The similarity between optimal shapes obtained in the unconstrained two and five pa-
rameter cases demonstrates the robustness of the SMF method. Comparison of the full SMF
method with the ‘strawman’ approach showed that the POLL step improves robustness and
can lead to a greater cost function reduction with minimal additional cost. In general, the
number of iterations required by the SMF method was modest. However, it may be possible
to further reduce the cost of the method through surrogate quality improvement. The use
of a second Gaussian process in Kriging was introduced in Audet et al. (2000) to prevent
surrogate degradation and has been shown to reduce the number of POLL steps in several
test cases. This is an area for future study.

In this work, we have demonstrated successful use of the SMF method for an expensive
function involving a time-dependent cost function. The methodology described in this paper
is not restricted to the unsteady laminar flow problem considered here. It can be applied
to a wide range of fluids problems with complex geometries, unsteadiness and turbulence.
Because of the portability of the method, it can be coupled to turbulent flow solvers based
on LES or unsteady RANS for high Reynolds number flows. Use of the SMF method for
time-dependent fluid dynamics problems avoids significant difficulties with the addition of
constraints, implementation and data storage that arise with adjoint solvers. In addition,
the SMF method shows promise for multi-objective problems involving the integration
of several simulation codes. In these problems (for example, fluid structure interaction),
gradient information is not easily available, and it is often desirable to treat the function
and constraints as a ‘black box.’ Even in problems in which gradients are available, the
SMF method has many desirable properties. Using only the sign of the gradient, polling
directions can be ‘pruned’ to reduce cost (Abramson et al., 2003). Gradient information
can be incorporated into the surrogate function to improve accuracy using co-Kriging as
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demonstrated in Chung and Alonso (2002). The SMF method has proven to reduce the risk
of quickly converging to a shallow local minimum, as is often the case in standard gradient
methods.
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